

New Mexico's Path to Reading Proficiency: A Lexile Growth Perspective

**A Quantitative Framework for Evaluating Reading
Proficiency**

Executive Summary

Commissioned by:

December 2025

The New Mexico Coalition of Educational Leaders (NMCEL) represents and supports educational leaders across New Mexico through advocacy, professional learning, and collaboration. NMCEL works to strengthen leadership capacity and advance policies that promote excellence and equity for all students statewide. Learn more at <https://www.nmcel.org>.

Evress helps states and school districts drive implementation fidelity, evaluate program impact, maximize return on investment, as well as conduct quantitative and qualitative research and analysis, with a dynamic education analytics platform paired with executive leadership development. Learn more at <https://evress.com>.

Technical Research Team

Alejandro Mendoza

Chief Technology Officer and Co-Founder
Evress Analytics

Samantha Lish, PhD

Project Lead
Evress Analytics

Sayli Shivalkar, MS

Data Scientist
Evress Analytics

Elizabeth Wang, MS

Data Scientist
Evress Analytics

Education Research Team

Stan Rounds, MEd

Executive Director
NMCEL

Lee White, MEd

Superintendent
Loving Municipal Schools

Stephanie Wyka, MEd

Director, Professional Learning
Evress Analytics

Contributing Superintendents

Cody Diehl — FARMINGTON MUNICIPAL SCHOOLS
Lauren Laws — AZTEC MUNICIPAL SCHOOLS
Carl Marano — ESPANOLA PUBLIC SCHOOLS
Dr. Channell Segura — POJOAQUE PUBLIC SCHOOLS
Rhiannon Chavez — CUBA INDEPENDENT SCHOOLS
Kristie Medina — RATON PUBLIC SCHOOLS
Dr. Christine E. Griffin — SANTA FE PUBLIC SCHOOLS
Martin Madrid — SANTA ROSA CONSOLIDATED SCHOOLS
Dr. Sue Cleveland — RIO RANCHO PUBLIC SCHOOLS
Lawrence Sanchez — BELEN CONSOLIDATED SCHOOLS
David Lackey — QUEMADO INDEPENDENT SCHOOLS
Dr. Cindy Sims — ESTANCIA MUNICIPAL SCHOOLS
Renee Russ — CLOVIS MUNICIPAL SCHOOLS
Robert Brown — TEXICO MUNICIPAL SCHOOLS
Tandee Delk — ELIDA MUNICIPAL SCHOOLS
Gene Strickland — HOBBS MUNICIPAL SCHOOLS
Pamela Quiñones — LOVINGTON PUBLIC SCHOOLS
Bruce Hatch — EUNICE PUBLIC SCHOOLS
Darian Jaramillo — ARTESIA PUBLIC SCHOOLS
Lee White — LOVING MUNICIPAL SCHOOLS
Molly Pierce — DEXTER CONSOLIDATED SCHOOLS
Belia Reyes — HAGERMAN MUNICIPAL SCHOOLS
Joyce Gormley — SOCORRO CONSOLIDATED SCHOOLS
J. Vance Lee — CAPITAN MUNICIPAL SCHOOLS
Jocelyne Driscoll-Gillespie — CLOUDCROFT MUNICIPAL SCHOOLS
Ignacio Ruiz — LAS CRUCES PUBLIC SCHOOLS
Travis Dempsey — GADSDEN INDEPENDENT SCHOOLS
Nick Wohlgemuth — DEMING PUBLIC SCHOOLS
Randy Piper — COBRE CONSOLIDATED SCHOOLS

New Mexico's Path to Reading Proficiency: A Lexile Growth Perspective

A Quantitative Framework for Evaluating Reading Proficiency

December 2025

Abstract

Reading proficiency remains a critical predictor of long-term academic and career outcomes, yet accurately measuring student growth is a persistent challenge for educators and policymakers. In New Mexico, understanding how students progress across grades K–12 is particularly urgent given evolving literacy standards and the need to align instructional support with state and national expectations. This study addresses these challenges by providing a comprehensive, longitudinal view of reading development to inform evidence-based policy and practice.

To achieve this, this study analyzed student-level Lexile data spanning multiple assessments, including NM-MSSA, iMSSA, Renaissance Star Reading, NWEA MAP Growth, and i-Ready, covering recent school years across participating districts. Scores were harmonized to a common Lexile scale, enabling cross-grade and cross-assessment comparisons, while also situating New Mexico students relative to national benchmarks and peer states. This approach captures both cumulative growth trajectories and district-level variation, offering a more nuanced perspective than single-assessment snapshots.

The analysis reveals several key findings. First, New Mexico students exhibit steady, grade-appropriate growth in reading, with most demonstrating cumulative growth progress that exceeds national norms. Second, from a Lexile-based perspective, New Mexico's performance is not last when mapped toward other states' proficiency cut scores. Third, NM-MSSA state-reported proficiency rates, while historically lower than national averages, may be more of an indicator of New Mexico's literacy proficiency standards rather than deficits in student performance, when compared to other states. Moreover, cross-state Lexile mappings show that New Mexico's reported proficiency rates would rise substantially under many neighboring states' thresholds, reinforcing that national comparisons based solely on raw proficiency percentages can obscure the state's true standing. Finally, integrating multiple assessments provides a reliable, longitudinal lens that accounts for variability in testing windows and measurement platforms, strengthening confidence in growth monitoring. These findings have direct implications for practice and policy. Sustaining literacy initiatives that prioritize growth, leveraging integrated assessment systems, and applying evidence-based benchmarks can enhance equitable outcomes and guide resource allocation. By combining rigorous measurement with actionable insights, educators and policymakers can better position the state to meet its long-term proficiency goals by sustaining its high growth rate across student grade levels.

Overall, this study positions New Mexico as making measurable strides in reading under challenging standards. It underscores the importance of evaluating growth alongside proficiency, highlighting both the potential and responsibility of sustained investment in literacy to support all students' success.

Keywords: New Mexico, reading proficiency, Lexile Framework, district growth, educational equity, longitudinal assessment, state assessment comparisons, multiple metric student assessment analysis

Contents

Acknowledgments	7
Glossary	8
Introduction	9
Project Background	9
Research Questions and Objectives	10
Chapter 1: Demographic, Socioeconomic, and Policy Context in New Mexico	11
State Assessment Systems and Proficiency Standards	11
The Role of the Lexile Framework in Measuring and Benchmarking Student Progress	12
Chapter 2: Methodology	13
Multi-District Analysis	13
State-Level Analysis	16
Linking NM-MSSA Scale Scores to Lexile Measures	16
Cross-State Comparisons Using MAP Growth as an Intermediary	16
Linking State Assessments to the MAP Growth Scale	17
Converting MAP RIT Scores to Lexile Measures	18
Constructing the Final Crosswalk	18
National Norms as an Interpretive Reference	18
Assumptions	18
Chapter 3: Results	19
New Mexico Growth Narrative Relative to National Lexile Norms	19
Lexile-to-State Proficiency Benchmarks	28
New Mexico NM-MSSA Standards are Stronger than Other States' Assessment Standards: A Lexile Crosswalk Heuristic Exercise	29
Chapter 4: Conclusions	33
New Mexico's Readers are Seeing Strong Growth	33
New Mexico is a High Standards State for Literacy	34
New Mexico's Lexile Standards for Success Exceed National Norms	34
Align the Expectations, and the Gap Disappears: New Mexico Is Not Last	34
Scope and Limitations	35

Implications	36
Implications for School and District Leadership	36
Implications for State Policy and Systems-Level Decision-Making	36
Future Directions for Research and Statewide Improvement	37
Closing	37
Appendices	38
A: Key Statistical Concepts and Equations	38
B: Summary of Crosswalk Data Linking State Assessments, MAP Growth, and Lexile Measures	40
C: Assessment Data Processing Summary	48
1. Districts & Assessment Types Included in Data Extraction	48
2. File Processing Results	49
3. Dataset Size Before and After Outlier Removal	49
4. Final Distributions After Anchoring by Grade and Assessment Type	50
5. Underlying Data Tables for Figures	51
About the Research Team	56

Acknowledgments

This report benefited from the expertise, guidance, and support of numerous individuals and organizations. We extend our sincere appreciation to Superintendent Lee White of Loving School District, and Executive Director Stan Rounds of the New Mexico Coalition of Educational Leaders (NMCEL), for their ongoing collaboration; their perspectives on New Mexico's educational landscape were instrumental in shaping the study's scope and focus.

We are especially grateful to the team at NMCEL for their indispensable support in aligning this analysis with state priorities, facilitating access to district-level data, and coordinating the collection of assessment results from 29 school districts across New Mexico's Regional Educational Cooperative (REC) regions. The study includes representation from each of the ten geographically defined REC regions, ensuring broad representation across the state. Historical reports and Lexile-to-state-cut-score mappings provided further context, helping to shape and refine the methodological approach employed in this analysis.

Within Evress Analytics, the research and data science team contributed significantly to processing assessment data sets, visualizing results, and synthesizing findings into a concise, actionable whitepaper for educational practitioners and policy leaders across the state. Their efforts in turning districts' data into meaningful insights were essential to the clarity and rigor of the report.

Finally, we acknowledge the many district leaders and educators who provided contextual insights, responded to inquiries, and helped ensure that the findings accurately reflect the diversity and opportunities of New Mexico's student population.

This report reflects the collective dedication of educators, district leaders, policymakers, and data partners working toward a shared vision for New Mexico's students. The collaboration among local and state leaders, NMCEL, and partner organizations demonstrates what is possible when expertise and purpose align in service of student growth and opportunity. Together, these efforts illuminate a path forward, one where data, dialogue, and shared commitment drive success for every student in New Mexico.

Glossary

Education Policy

P-20 Council — Coordinates education policy from Pre-K through graduate school to align K–12 with postsecondary and workforce pathways.

NMPED — New Mexico Public Education Department.

REC — Regional Education Cooperative Districts; multi-district collaboratives that provide services and support for local schools.

MetaMetrics — Research organization that developed the Lexile and Quantile Frameworks used to measure reading and math ability.

ELL — English Language Learner; a student developing English proficiency in addition to their home or heritage language(s).

Direct certification — Automatically identifies students as economically disadvantaged or eligible for free school meals based on government assistance participation, foster care, homelessness, or migrant status.

Assessments

NM-MSSA — New Mexico's statewide summative ELA and math assessment (Grades 3–8).

iMSSA — Interim version of NM-MSSA used for in-year progress monitoring.

NAEP — National Assessment of Educational Progress; measures national reading and math proficiency.

NWEA MAP — Measures of Academic Progress developed by the Northwest Evaluation Association.

Renaissance — Developer of the Star Reading Suite, which reports Lexile scores for frequent progress monitoring.

i-Ready — Reading diagnostic and instructional program that reports Lexile measures.

Istation — Early-literacy-focused reading assessment and instructional platform that reports Lexile scores.

Performance Benchmarks

Lexile — A reading scale where comprehension is about 75 percent when a reader's Lexile level is close to the text's Lexile level. Differences help predict comprehension.

Interim Assessments — Assessments such as Renaissance Star Reading, NWEA MAP Growth, i-Ready, and Istation; all report Lexile scores.

Summative Assessment — High-stakes end-of-year assessments; New Mexico uses the NM-MSSA for Grades 3–8.

Cut Score — Threshold separating performance levels; used to map NM-MSSA cut scores to Lexile values.

Proficiency Levels — Categories such as Not Proficient, Proficient, and Advanced.

Introduction

Project Background

New Mexico's educational landscape presents a complex interplay of pressing challenges and emergent opportunities for evidence-based progress. Among the most critical concerns is chronic absenteeism, consistently identified in legislative reports and scholarly research as a key determinant of academic success (17). Regular attendance not only underpins academic achievement but also fosters social and emotional development by facilitating meaningful engagement with educators, peers, and curriculum. In contrast, frequent absences disrupt learning continuity and exacerbate achievement gaps that persist across grade levels and geographic regions.

These challenges are compounded by enduring socioeconomic disparities: over 85 percent of New Mexico schools qualify as Title I, and the state continues to contend with one of the highest child poverty rates in the nation. Moreover, cross-border student mobility is a longstanding feature of southern New Mexico, where some children residing in Mexico attend local public schools. This dynamic complicates enrollment accuracy, funding allocations, and continuity of educational services.

The scope of these issues aligns with the core concerns raised in *Martinez/Yazzie v. State of New Mexico* (consolidated in 2015), a landmark lawsuit in which families and school districts successfully argued that the state failed to provide a constitutionally sufficient and equitable education for at-risk students, including English learners, Native American students, students with disabilities, and those experiencing poverty. In 2018, the court ruled that New Mexico was not meeting its obligations under the state constitution or its own education statutes, directing the state to remedy systemic shortcomings in funding, instruction, and support services. Despite increased investments and the development of the *Martinez/Yazzie Action Plan*, the court reaffirmed in 2025 that the state remains out of compliance, making the case a continuing driver of policy, oversight, and reform efforts across New Mexico's public education system (18, 20, 21, 22).

In response to these challenges, New Mexico has prioritized the expansion of its educational data systems, seeking greater accessibility and analytical rigor. The state's multi-agency P20W+ data integration initiative, linking early childhood, K–12, higher education, and workforce outcomes, represents a forward-looking effort to track student progress longitudinally and inform policy with robust evidence. In collaboration with district administrators and educational leaders statewide, this project builds on those foundations by translating complex assessment data, particularly Lexile measures, into actionable insights for policymakers. By considering multiple measures of student learning rather than relying on a single assessment or ranking, the initiative offers a nuanced and comprehensive view of achievement, moving beyond localized snapshots to capture the full breadth of student growth and opportunity across New Mexico. Accordingly, this report complements the state's evolving data infrastructure by shaping these disparate streams of assessment information into a structured, policy-oriented analysis that can guide decision-making at multiple levels.

Recent data from the National Assessment of Educational Progress (NAEP), the Nation's Report Card (8), administered biennially by the National Center for Education Statistics, underscore the state's growing commitment to enhancing reading and mathematics outcomes. Notably, New Mexico has achieved historic gains in fourth grade mathematics, demonstrating momentum toward statewide improvement. Complementary evidence from recent NWEA MAP, a leading assessment provider in the nation (4), further indicates that New Mexico is not at the lowest end of national performance, highlighting the potential for targeted interventions to yield meaningful gains. This work also follows in the footsteps of other emerging research efforts from the Urban Institute (23), which has advanced methods for evaluating state performance on NAEP through demographic adjustment, placing New Mexico at 45th in 4th-Grade Reading and 35th in 4th-Grade

Math. Our approach follows the same spirit of a fairer approach to cross-state comparisons, but focuses specifically on quantitative mappings and conversions using Lexile distributions rather than demographic controls, providing a clear and transparent view of how New Mexico's expectations compare with those of peer states.

This report is structured into four chapters, each addressing a distinct dimension of New Mexico's educational ecosystem. Chapter 1, "Demographic, Socioeconomic, and Policy Context in New Mexico," establishes the broader landscape, detailing state assessment systems, proficiency standards, and the role of the Lexile framework in benchmarking learning. Chapter 2, "Methodology," outlines the analytical approach, including district-level analyses, data sourcing procedures, statewide aggregation, and methods for establishing national comparison standards using Lexile measures. Chapter 3, "Results," presents the empirical findings, reporting district-level outcomes and evaluating student performance relative to state proficiency benchmarks. Finally, Chapter 4, "Conclusions," synthesizes the insights, interprets implications for instruction and policy, and offers recommendations along with directions for future research and practice. Collectively, these chapters guide the reader from context to methods to evidence and interpretation, providing a coherent, actionable portrait of student learning and growth throughout New Mexico.

Research Questions and Objectives

New Mexico's recent rise in national rankings, particularly its gains in 4th-grade mathematics on the National Assessment of Educational Progress (NAEP), signals meaningful progress toward statewide improvement. For policymakers accustomed to seeing New Mexico near the bottom of national lists, this upward trend highlights the importance of rigorous, comparative data to contextualize achievement. Extending this perspective to reading proficiency, this project aims to interpret Lexile measures within both national and state-specific frameworks, offering a clearer picture of where New Mexico stands relative to its peers and how much progress is being made.

To provide a comprehensive, data-driven view of reading achievement, the analysis combines state-level and district-level perspectives, integrating both national comparability and within-state growth patterns. The project focuses on five key research questions:

- **Unified Framework for Examining Assessment Data:** How can New Mexico's diverse assessment systems, including NM-MSSA, iMSSA, and adaptive interim measures, be translated into a common Lexile-based framework that permits coherent analysis of student growth across grades and years?
- **Tracking Lexile Growth Across Time:** What longitudinal patterns emerge when tracing Lexile growth statewide, and how do state-level trajectories compare with national medians and norms?
- **Success Expectations and the Interpretation of Proficiency:** How do New Mexico's Lexile proficiency expectations shape our interpretation of student achievement and the apparent gap between growth and proficiency rates?
- **Benchmarking New Mexico's Performance Nationally:** When New Mexico's proficiency thresholds are benchmarked against national standards and established comparators, how do students' growth-adjusted outcomes position the state relative to its peers?
- **Ensuring Data Integrity and Analytic Validity:** What data-quality, alignment, and standardization decisions are required to ensure that cross-assessment comparisons, particularly those involving Lexile conversions, yield reliable and interpretable regional findings?

To address these questions, the analysis develops regression models to translate assessments to a common Lexile scale, links multiple assessment sources when feasible, and relies on iMSSA and NM-MSSA records as the primary source of truth. Datasets that cannot be reliably matched are excluded to preserve analytic rigor. This unified framework situates New Mexico's progress both within the state and in relation to national benchmarks, providing actionable insights for policymakers and educational leaders.

Chapter 1: Demographic, Socioeconomic, and Policy Context in New Mexico

New Mexico's public education system operates within a uniquely complex demographic and socioeconomic landscape, one shaped by diverse student populations, persistent poverty, and longstanding structural inequities. In 2022, more than 315,000 students were enrolled in K–12 public schools, with 63.4 percent identifying as Hispanic, 10.3 percent as Native American, and 1.8 percent as Black (19). The state also serves large numbers of student groups historically identified as “at risk,” including 18.8 percent English learners, nearly 17.8 percent of students with disabilities, and more than 75 percent of students who are direct-certified economically disadvantaged. These demographic realities underscore the need for policies and practices that recognize both the strengths and the varied needs of New Mexico's communities.

Socioeconomic conditions further compound these educational challenges. More than 85 percent of the state's schools qualify for Title I, and New Mexico continues to face one of the highest child poverty rates in the nation. These factors shape students' daily experiences in meaningful ways, influencing access to stable housing, healthcare, transportation, and enrichment opportunities, all of which directly affect educational engagement and achievement. In regions along the U.S. and Mexico border, cross-border student mobility adds another layer of complexity, affecting enrollment accuracy, resource allocation, and continuity of services. Understanding these socioeconomic dynamics is essential for designing responsive policies and supports that meet students where they are. Within this broader context, chronic absenteeism has emerged as one of the most urgent statewide challenges, with 28.9 percent of students in 2024–25 missing more than 10 percent of instructional time (17). High absenteeism not only disrupts learning continuity but also widens pre-existing achievement gaps, particularly for students navigating economic hardship, unstable housing, or limited access to transportation. Addressing absenteeism effectively requires coordinated efforts at both the school and systems levels, leveraging data-driven early warning systems, strengthening family-school partnerships, and implementing targeted interventions that respond to root causes rather than symptoms.

These demographic and socioeconomic conditions also intersect with the policy environment shaped by Martinez/Yazzie (18, 20, 21, 22), the landmark case that found the state out of compliance with its constitutional obligation to provide equitable and sufficient education for English learners, Native American students, students with disabilities, and students experiencing poverty. Despite increased investment and the development of the Martinez/Yazzie Action Plan, the court reaffirmed in 2025 that systemic gaps remain. As a result, demographic realities, socioeconomic barriers, and policy mandates now converge to frame a renewed sense of urgency and opportunity for building a more equitable, data-informed, and student-centered public education system in New Mexico.

State Assessment Systems and Proficiency Standards

New Mexico's student assessment and accountability framework, overseen by the Public Education Department (PED), is designed to provide a coherent measure of student learning aligned with the

Every Student Succeeds Act (ESSA) and the state's academic standards. The system combines summative, interim, and early-grade diagnostic assessments to monitor progress across content areas and grade levels. The NM-MSSA serves as the annual summative test for grades 3–8 in mathematics and English language arts, with Spanish-language variants available for eligible students, while the optional iMSSA interim assessments offer districts additional information to guide instruction. Science proficiency is measured through NMASR in grades 5, 8, and 11, and high school students complete the SAT as a statewide indicator of college- and career-readiness. English learners participate in ACCESS for ELLs to assess annual progress toward language proficiency. For early literacy, New Mexico uses Istation's ISIP Early Reading assessment in grades K–2 to track foundational reading development and inform early intervention decisions. Across assessments, PED provides universal features, designated supports, and documented accommodations to ensure equitable access for students with disabilities, English learners, and others requiring tailored supports. These structures help ensure that test results reflect students' knowledge and skills rather than barriers to participation, aligning with statewide commitments to improving equity and instructional access.

Performance on statewide assessments is reported across four proficiency levels: Novice, Nearing Proficiency, Proficient, and Advanced. These proficiency levels are established through formal standard-setting processes involving educators, psychometrists, and policymakers. For reading, scale scores are supplemented by Lexile measures, which offer a nationally recognized framework for interpreting students' reading abilities and situating them within grade-level and college- and career-readiness expectations. These combined reporting systems enable districts, educators, and families to better understand student performance, identify gaps, and monitor progress over time.

Assessment outcomes also play a central role in statewide accountability and school improvement. ESSA indicators, including proficiency, longitudinal growth, English language proficiency progress, and graduation rates, inform school identification for targeted or comprehensive support and guide state oversight and resource allocation. Critically, these data provide key evidence for tracking New Mexico's progress toward addressing the systemic inequities identified in Martinez/Yazzie, helping determine whether policy and instructional reforms are improving outcomes for English learners, Native American students, students with disabilities, and economically disadvantaged students. Together, the state's assessment systems and proficiency standards form the foundation for evaluating instructional effectiveness and advancing educational equity across New Mexico.

The Role of the Lexile Framework in Measuring and Benchmarking Student Progress

The Lexile Framework for Reading provides a standardized, continuous metric of both text complexity and individual reading ability, expressed numerically with an "L" (e.g., 850L). The scale ranges from below 200L for beginning readers to above 1600L for highly advanced readers, enabling the assessment of growth from early literacy through postsecondary readiness. Lexile measures are generated through an algorithm that evaluates sentence length and word frequency, and they are empirically linked to standardized assessments and reading programs through validity and calibration studies. This linkage supports year-to-year comparability and reliable cross-grade, cross-assessment benchmarking, capabilities that are essential for longitudinal progress.

Beyond its psychometric rigor, the Lexile Framework offers actionable guidance for instruction. Educators can match students with texts within a range of 50L below to 100L above their measured ability, fostering engagement while minimizing frustration. Importantly, Lexile measures quantify only reading comprehension as it relates to text complexity; they do not capture broader literacy skills such as background knowledge, vocabulary breadth, or writing ability, helping guard against common misinterpretations. Lexile norms also provide expected annual growth trajectories, enabling educators to contextualize whether students are making typical, accelerated, or insufficient progress.

The Lexile framework further differentiates between percentile norms, indicating a student's standing relative to a national population, and state-defined performance standards. Grade-specific stretch bands correspond to college- and career-ready expectations and align with the reading demands of postsecondary texts, technical manuals, and workplace materials. These features equip teachers and policymakers to monitor progress, evaluate interventions, examine subgroup trends, and make evidence-informed decisions at the classroom, school, district, and state levels (Table 1).

In New Mexico, the state has begun reporting Lexile measures alongside NM-MMSSA scores, providing an additional layer of interpretive and diagnostic information for educators and stakeholders (15). This integration underscores the state's commitment to leveraging nuanced, actionable data to inform instruction and policy, while also enabling longitudinal tracking of student reading growth.

Table 1: Summary of Lexile proficiency categories and corresponding grade bands. Ranges are approximate and may vary across assessments.

Proficiency Category	Approximate Lexile Range (L)	Typical Grade Band
Beginning Reader	Below 200L	PreK–1
Early Reader	200L–600L	Grades 1–3
Developing Reader	600L–900L	Grades 4–5
Proficient Reader	900L–1200L	Grades 6–10
Advanced Reader	1200L and above	Grades 11–12+

Chapter 2: Methodology

This analysis synthesizes district- and state-level Lexile data from iMSSA, NM-MSSA, i-Ready, Renaissance, and NWEA reading assessments across 29 New Mexico districts. The study spans Grades K–12 across multiple academic years, with a focus on Grades 3 through 8, and benchmarks Lexile proficiency cut scores against national Lexile bands (50th percentile norms). The synthesis quantifies proficiency trends, identifies growth trajectories, and evaluates cut score alignment by anchoring to each student's highest annual Lexile score. The final dataset, totaling over 280,000 unique student-year Lexile scores, was meticulously cleaned, de-duplicated, and outlier-filtered using a $3 \times \text{IQR}$ method to ensure rigor and comparability across districts and years (refer to Appendix C for details).

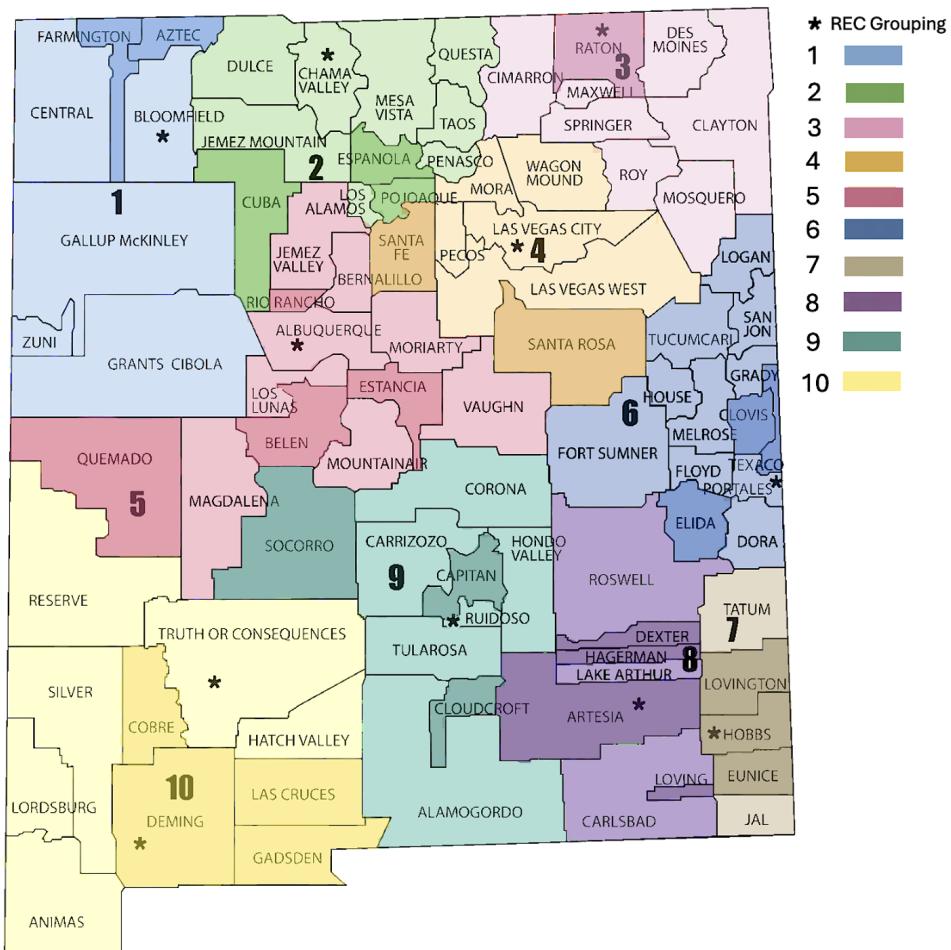
Data processing, statistical analyses, and visualizations were executed in **Python**, leveraging the `pandas`, `numpy`, `matplotlib`, and `seaborn` libraries to ensure reproducibility, transparency, and methodological rigor throughout the workflow. In combination, this methodological architecture provides a coherent analytical foundation that supports meaningful cross-district comparability, allows proficiency gaps to be interpreted with appropriate context, and strengthens the evidence base upon which policy and leadership decisions must ultimately rest.

Multi-District Analysis

The goal of this multi-district analysis was to create a comparable, cross-district Lexile dataset suitable for longitudinal trend analysis, proficiency estimation, and variance modeling. These analyses required substantial harmonization due to varied assessment providers, heterogeneous

file structures, and inconsistent reporting practices. At a multi-district level, analyses were restricted to students with complete identifiers, grade, test date, and Lexile scores. Records failing these criteria were excluded, while partial data were occasionally supplemented through limited imputation, preserving longitudinal tracking across unique student records. Historical Lexile-to-state-cut-score mappings were incorporated to align Lexile proficiency bands with New Mexico's performance standards. Descriptive statistics—including means, medians, standard deviations, and interquartile ranges—were computed by grade, with distributions visualized via scatterplots, histograms, and kernel density plots to assess central tendency and dispersion. Proficiency analyses focused on state-level comparisons, aligning New Mexico Lexile distributions with other states' cut-score frameworks to estimate how reported proficiency rates would change. Temporal analyses traced shifts in average Lexile performance over time, and correlation analyses examined the relationship between Lexile and NM-MSSA scores where available. Results were presented through statistical tables and longitudinal trend plots to highlight statewide progress relative to both state and national benchmarks.

Data were obtained directly from individual district assessment portals. Each district submission, provided as CSV exports, was systematically standardized and then organized by assessment provider to facilitate smooth cross-district integration. The resulting datasets contain multiple assessment instruments: NM-MSSA, iMSSA, NWEA MAP, i-Ready, and Renaissance STAR Reading, selected for their inclusion of Lexile measures. (ISIP Early Reading files were excluded because they do not provide Lexile-linked metrics. Although a state-level Istation report exists (25), the historical data have become inaccessible to districts following the deprecation of the original Istation portal in the academic year AY 2025-2026, limiting the incorporation of past results in this analysis. Nevertheless, future studies may reconstruct or regain access to Istation longitudinal records, providing an additional dimension to statewide reading proficiency trend analyses.) The data reported here encompass 29 New Mexico districts, as highlighted in Figure 1. For a more in-depth understanding of the data curation pipeline see Appendix C.


Each assessment dataset arrived with heterogeneous headers and file formats, necessitating a tailored cleaning pipeline per provider. Columns were mapped to a common schema, student IDs normalized as trimmed strings, grades converted to integers with K=0 and Pre-K=-1, Lexile scores parsed from strings such as "845L" or "BR400" (with BR converted to negative values), and dates interpreted according to each provider's native format. Only rows containing all four critical variables, student ID, grade, test date, and Lexile score, were retained, with targeted audits applied to files exhibiting substantial row loss to verify that dropped rows reflected genuinely missing data. Outlier detection was applied locally using a per-assessment, per-grade $3 \times \text{IQR}$ rule, without imposing a hard global Lexile cut-off. For Renaissance data, which reports "Current Grade" rather than grade at test date, a July-based school-year boundary and a fixed anchor year (SY 2025–26) were used to engineer effective grades, ensuring comparability while acknowledging that retention or acceleration cannot be inferred without additional student-level information. Each processed file generated a summary of rows retained and dropped, along with engineered-grade coverage, providing transparency and facilitating quality review.

The following assumptions were explicitly applied for reproducibility:

- **Column names.** Exact matches to expected headers were required; otherwise, files were skipped.
 - **NM-MSSA:** Student ID, Student Grade, Day Language Arts Completed, Lexile
 - **iMSSA:** Student ID, Student Grade, Day Reading Completed, Lexile Score
 - **NWEA MAP:** Student ID, Grade, Term Tested, Lexile Score
 - **i-Ready:** Student ID, Student Grade, Completion Date, Lexile Measure
 - **Renaissance STAR:** Student ID, Current Grade, Activity Completed Date, Lexile Score

Figure 1: Data Coverage of New Mexico's School Districts. Districts partnering in this study are shown in a darker shade within each of the ten Regional Education Cooperative (REC) regions and each region's associated member districts (12).

Data Coverage by 10 Geographies of New Mexico

- **Grade normalization.** “Grade 03,” “K,” and “Pre-K” standardized to integers with K=0 and Pre-K=-1; leading zeros removed.
- **Lexile parsing.** The “L” suffix removed; BR### treated as negative integer (e.g., BR400 → -400).
- **Date parsing by provider.** NM-MSSA: YYYY-MM-DD; iMSSA, i-Ready, and NWEA: MM/DD/YYYY; Renaissance: YYYY-MM-DD HH:MM:SS.sss.
- **Date imputation.** Missing dates imputed to quarter midpoints: Fall → Nov 15, Winter → Feb 15, Spring → May 15.
- **NWEA term mapping.** Seasonal terms converted to mid-term dates for timeline consistency.
- **School-year boundary.** July-to-June applied statewide.
- **Inclusion rule.** Non-missing Student ID, Grade Level, Test Date, and Lexile score required.
- **Outliers.** Values beyond $3 \times \text{IQR}$ per assessment-grade were excluded.
- **Score selection.** Aggregate charts anchor to highest Lexile per student-year; individual student charts retain all events; NM-MSSA→Lexile linking follows source methodology.

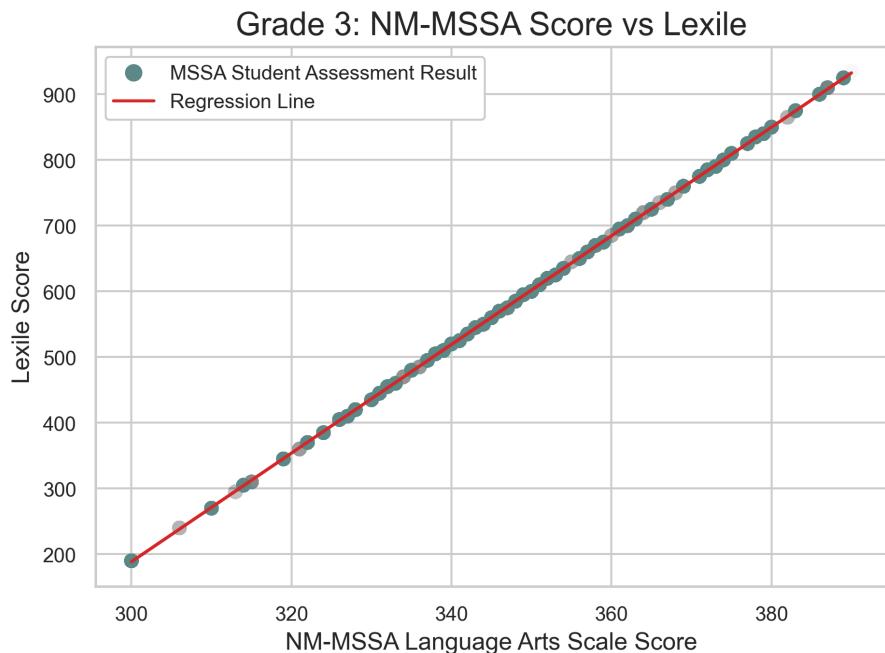
- **Coverage.** Results reflect participating districts only.

This analysis thus represents a harmonized view of heterogeneous assessments used across the state of New Mexico. Although every assessment included in this study reports Lexile measures, the assessments themselves differ in design and structure. For that reason, comparative analyses emphasize Lexile-based trends rather than any attempt to infer equivalence or relative rigor across assessment systems. The header-matching requirement safeguards data integrity; the Renaissance grade engineering assumes uniform progression, with retention or acceleration unobservable without supplemental information. Outlier detection is conservative, prioritizing data validity while recognizing some legitimate extreme values may be excluded. All data processing was compiled and executed with FERPA-aligned data privacy practices, and no personally identifiable information was retained beyond anonymized student IDs.

State-Level Analysis

State-level analyses focused on linking NM-MSSA scale scores to Lexile measures and situating New Mexico's proficiency standards within a broader national and cross-state context. This required constructing predictive models, validating linear relationships, and applying a two-stage crosswalk to map state cut scores onto a common Lexile scale. Because NM-MSSA reports both scale scores and Lexile measures, these dual-linked datasets allow direct modeling of the NM-MSSA score-to-Lexile relationship, producing interpretable Lexile-based proficiency thresholds. Models were based on approximately $N = 111,891$ students matched student records across Grades 3–8.

Linking NM-MSSA Scale Scores to Lexile Measures


Using NM-MSSA and iMSSA datasets containing both scale scores and Lexile measures, a baseline predictive model was constructed to translate New Mexico's scale scores into Lexile equivalents. Following data cleaning and outlier removal, a simple linear regression estimated the relationship between NM-MSSA scores and Lexile measures. This model produced predicted Lexile values corresponding to the state's proficiency cut scores, enabling direct comparisons with neighboring states, including Oklahoma, Kansas, Arizona, Colorado, Nebraska, California, and Texas.

The analysis assumes a stable linear relationship between scale scores and Lexile measures across grades, which was supported by regression diagnostics and visual inspections of residuals. To better understand New Mexico's NM-MSSA ELA results, grade-level Lexile measures were benchmarked against: (a) national Lexile norms representing the median performance of U.S. students, and (b) state-specific proficiency standards. Ordinary least squares (OLS) regression modeled the relationship between NM-MSSA scale scores and Lexile measures (Figure 2). A global model confirmed overall linearity, followed by grade-specific regressions permitting distinct slopes and intercepts. High R^2 values and tightly fitted scatterplots indicated a strong linear correspondence. For each grade g , the Lexile equivalent of the NM-MSSA *Proficient* lower bound S_g was computed, producing cut scores of approximately 685L (Grade 3), 800L (Grade 4), 895L (Grade 5), 1054L (Grade 6), 1109L (Grade 7), and 1182L (Grade 8), mapping policy-level proficiency thresholds directly onto the Lexile scale (see Appendix A for regression diagnostics).

Cross-State Comparisons Using MAP Growth as an Intermediary

To enable valid cross-state comparisons within a unified interpretive framework, we employed a two-stage crosswalk that converts state-specific proficiency standards into Lexile measures by using the NWEA MAP Growth RIT scale as an intermediary (5). MAP Growth serves as the bridge metric because it maintains published, peer-reviewed linking studies with both state assessments

Figure 2: Relationship between NM-MSSA ELA scale scores and Lexile measures (Grade 3). Each point represents an individual student record. The fitted OLS regression line demonstrates a strong linear correspondence ($R^2 > 0.9$) between NM-MSSA scale scores and Lexile values within the operational range, forming the basis for translating proficiency cut points into equivalent Lexile thresholds for cross-state and national benchmarking.

and the Lexile framework, thereby providing an empirically defensible and reproducible pathway for translation. Participating states release concordance studies that map their assessment scores onto MAP Growth performance levels, alongside conversion functions that relate MAP RIT scores to Lexile measures (see Table 5). When synthesized, these resources support a systematic two-step transformation—from state assessment metrics to MAP RIT values, and from MAP RIT values to Lexile units—grounded in matched student samples assessed on both instruments and implemented through established equipercentile and concordance methodologies.

This analysis uses the 2025 cohort of linking studies 4, encompassing 35 participating states: Texas, Massachusetts, New York, Georgia, Virginia, Minnesota, Nevada, Nebraska, Alaska, Pennsylvania, Michigan, Ohio, Florida, California, Oregon, Iowa, Illinois, Indiana, Tennessee, South Carolina, North Carolina, Washington, New Jersey, New Mexico, Kentucky, Kansas, South Dakota, Colorado, Arizona, Wisconsin, Arkansas, Missouri, North Dakota, Mississippi, and Oklahoma. All reports are publicly accessible through NWEA's State Solutions Portal.

Linking State Assessments to the MAP Growth Scale

The first stage draws upon a comprehensive set of state-specific linking studies conducted by the Northwest Evaluation Association (NWEA). These studies statistically align each state's summative assessment with the MAP Growth assessment through equipercentile and concordance methods, thereby identifying the MAP RIT cut scores that correspond to each state's definition of "proficient" performance 5. Each study relies on matched student samples who completed both assessments within the same testing window, enabling precise estimation of the RIT thresholds associated with state proficiency levels.

In addition to reporting cut scores, NWEA provides classification accuracy metrics—including

sensitivity, specificity, false-positive and false-negative rates, and area under the curve (AUC), that quantify how reliably the derived RIT cut scores predict state proficiency classifications. For example, the Texas *STAAR–MAP Growth* linking study (NWEA, 2025) indicates RIT proficiency cut scores of 197, 208, 211, 215, 216, and 218 for Grades 3–8, with classification accuracies ranging from 0.80 to 0.84. These empirically derived thresholds mark the RIT levels at which students are predicted to meet Texas’s grade-level expectations.

Converting MAP RIT Scores to Lexile Measures

In the second stage, each MAP RIT cut score was converted to its corresponding Lexile range using the official NWEA–MetaMetrics conversion table (MetaMetrics & NWEA, 2019). Each RIT value maps to a lower and upper Lexile bound, representing the typical reading comprehension range associated with that score. To produce a single interpretable value, we estimated a midpoint Lexile equivalent as follows:

$$\text{Estimated Lexile} = \text{Lexile}_{\text{lower}} + 100L.$$

For instance, a RIT score of 197 corresponds to a Lexile range of 505L–655L (estimated midpoint $\approx 605L$), while a RIT of 218 corresponds to 930L–1080L (midpoint $\approx 1030L$). This conversion provides a standardized, continuous scale for comparing reading proficiency expectations across states.

Constructing the Final Crosswalk

By merging the state-specific proficiency cut scores with their corresponding RIT-to-Lexile mappings, we derived a unified State to RIT to Lexile crosswalk for each state. Table 1 illustrates this process for Texas, combining empirical accuracy data from the NWEA linking study with Lexile conversions from the MetaMetrics lookup.

National Norms as an Interpretive Reference

To understand these Lexile-based standards within a broader interpretive framework, we also incorporated a **National Norms (Lexile®)** benchmark. This comparator uses the spring (end-of-year) 50th-percentile Lexile medians from MetaMetrics’ 2010–2019 national norms study, representing the typical reading measure for U.S. students at each grade—not a proficiency threshold—and independent of any single state test. For Grades 3–8, these median Lexile values are approximately 645L, 850L, 950L, 1030L, 1095L, and 1155L, respectively. These reference points indicate where the “average” U.S. student tends to perform by the end of each grade. However, the norms reflect the sampled population and study period (2010–2019), may drift over time, and should not be interpreted as policy-based cut scores or mastery of standards.

Assumptions

For transparency regarding time period, our crosswalk integrates three distinct but complementary sources: (1) state to MAP linkages from the 2025 updated NWEA studies (aligned with the 2025 MAP Growth norms), (2) MAP RIT to Lexile conversions from the February 2019 MetaMetrics–NWEA lookup (© 2019), and (3) the national Lexile medians from 2010–2019. As these sources span 2025, 2019, and 2010–2019 respectively, all comparisons necessarily assume temporal stability rather than exact same-year alignment. This tri-source synthesis ensures both methodological transparency and interpretive coherence across differing time horizons.

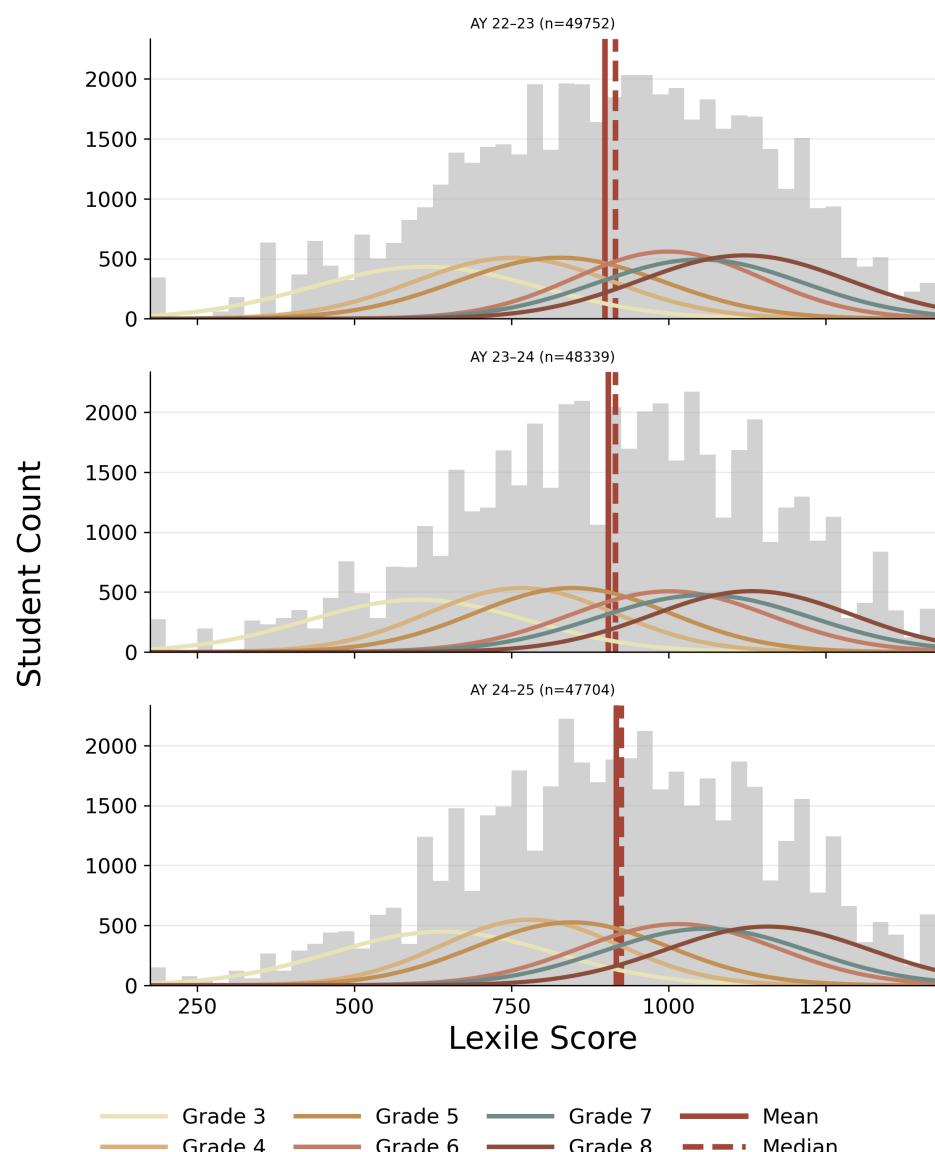
Through this two-stage crosswalk and its national contextualization, the analysis provides a consistent, empirically grounded framework for expressing state reading proficiency standards on the Lexile scale. In doing so, it enables transparent cross-state comparisons, supports longitudinal benchmarking, and clarifies how varying proficiency definitions align on a shared continuum of reading complexity.

Chapter 3: Results

Reading growth is a central indicator of educational recovery and long-term academic development. This chapter presents statewide and cross-state findings based on the unified Lexile dataset developed in Chapters 1 and 2. These results examine both absolute performance and growth trajectories, contextualize New Mexico's standards nationally, and explore how proficiency rates shift when mapped to peer-state frameworks. Throughout this chapter, "status" refers to students' current achievement levels, typically expressed through median Lexile values or proficiency rates at a given grade and year. In contrast, "growth" captures how students' reading ability increases over time, whether measured through longitudinal trajectories or grade-to-grade changes. Because status and growth often move in different ways and can lead to different conclusions, the analyses that follow explicitly distinguish between these two dimensions. From a Lexile-centered perspective, New Mexico's lower proficiency rates may reflect the rigor of its assessment system rather than substantially weaker performance, as shown through the crosswalk and growth analyses below. Simply stated, New Mexico's students are not trailing the nation; rather, the NM-MSSA assessment indicates there may be a higher level of proficiency expectations than those of peer-state tests. By integrating longitudinal Lexile data from multiple assessments with national benchmarks, these analyses show that New Mexico's reading growth is largely on par with national patterns, while its proficiency thresholds are meaningfully more rigorous than those of most peer states.

New Mexico Growth Narrative Relative to National Lexile Norms

The trajectory of reading development in New Mexico, when viewed through a longitudinal, multi-assessment lens, reveals a pattern of steady advancement that is more complex than any single metric can convey. Situating student performance against national Lexile norms allows us to observe not only where students stand at a given moment, but also how literacy skills accumulate over time. By integrating state summative assessments (NM-MSSA) with interim and adaptive measures onto a shared Lexile scale, we can disentangle grade-level status from underlying momentum, capturing the arc of learning within and across cohorts. This combined perspective makes it possible to trace how reading ability evolves as students progress through the system, how differences emerge within grade bands, and how New Mexico's pace of growth aligns with national patterns. The narrative that follows draws on this cross-assessment, norm-referenced approach to illuminate the state's literacy development more comprehensively.

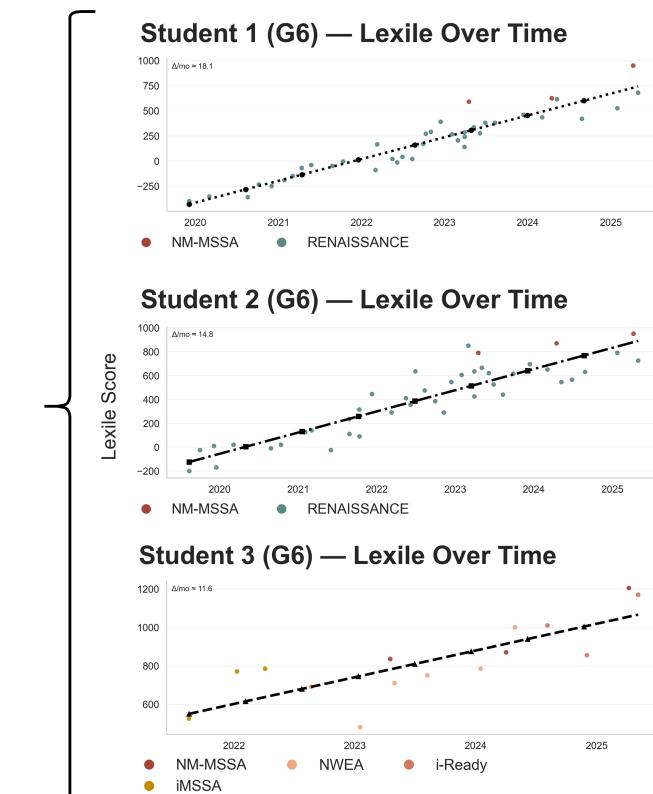
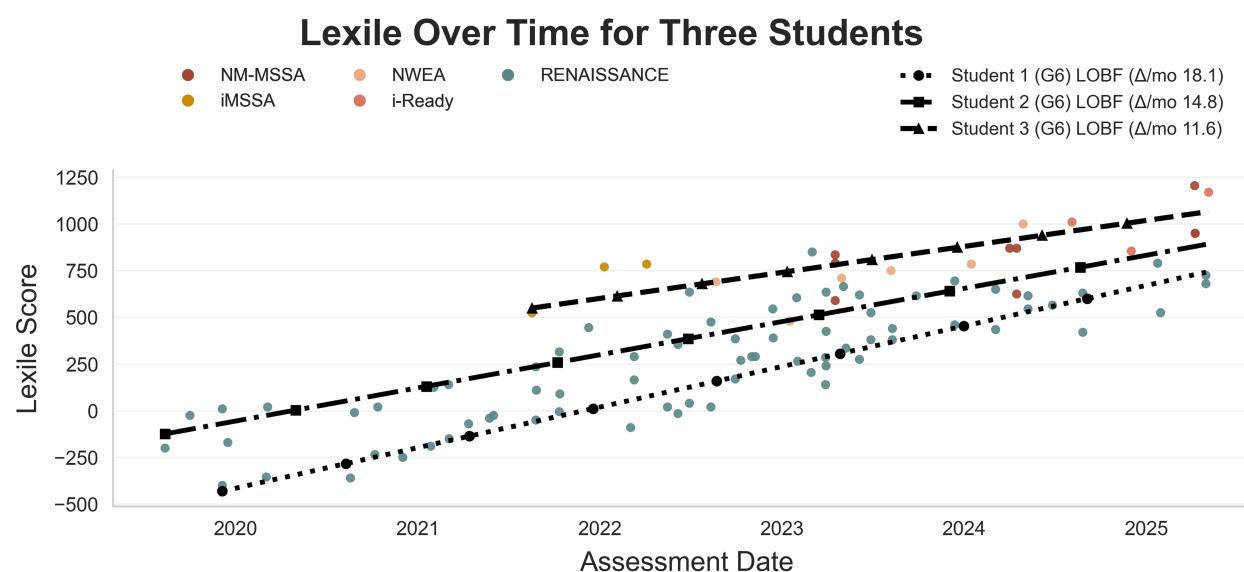

First, it is instructive to consider what the picture looks like when attention is restricted to NM-MSSA Lexile performance alone. Figure 3 displays all valid NM-MSSA Lexile records from Spring 2023 through Spring 2025 for Grades 3–8, with extreme values screened using a $3 \times IQR$ criterion. Lexile scores are plotted by test year, providing a clean, internally consistent view of reading performance across three consecutive administrations. The pattern is reassuringly stable: across grades, students show the expected year-over-year gains, and the familiar left-to-right stratification of grade distributions emerges clearly.

Yet an NM-MSSA-only view, while valuable for within-assessment tracking, offers a narrower perspective. It cannot capture the fuller range of student learning demonstrated across other assessments, nor can it contextualize performance relative to national norms or broader statewide

trends derived from multi-assessment Lexile aggregations. The incremental improvement visible in Figure 3 therefore represents only one thread of the larger literacy narrative. Interpreted alongside the multi-vendor, longitudinal analyses presented later (e.g., Figures 4-6), the NM-MSSA results underscore both the strengths and limitations of relying on a single assessment: they provide precise year-over-year comparability but cannot, on their own, characterize New Mexico's overall growth trajectory. This contrast illustrates why a broader Lexile-based framework is essential for understanding how New Mexico students are truly progressing.

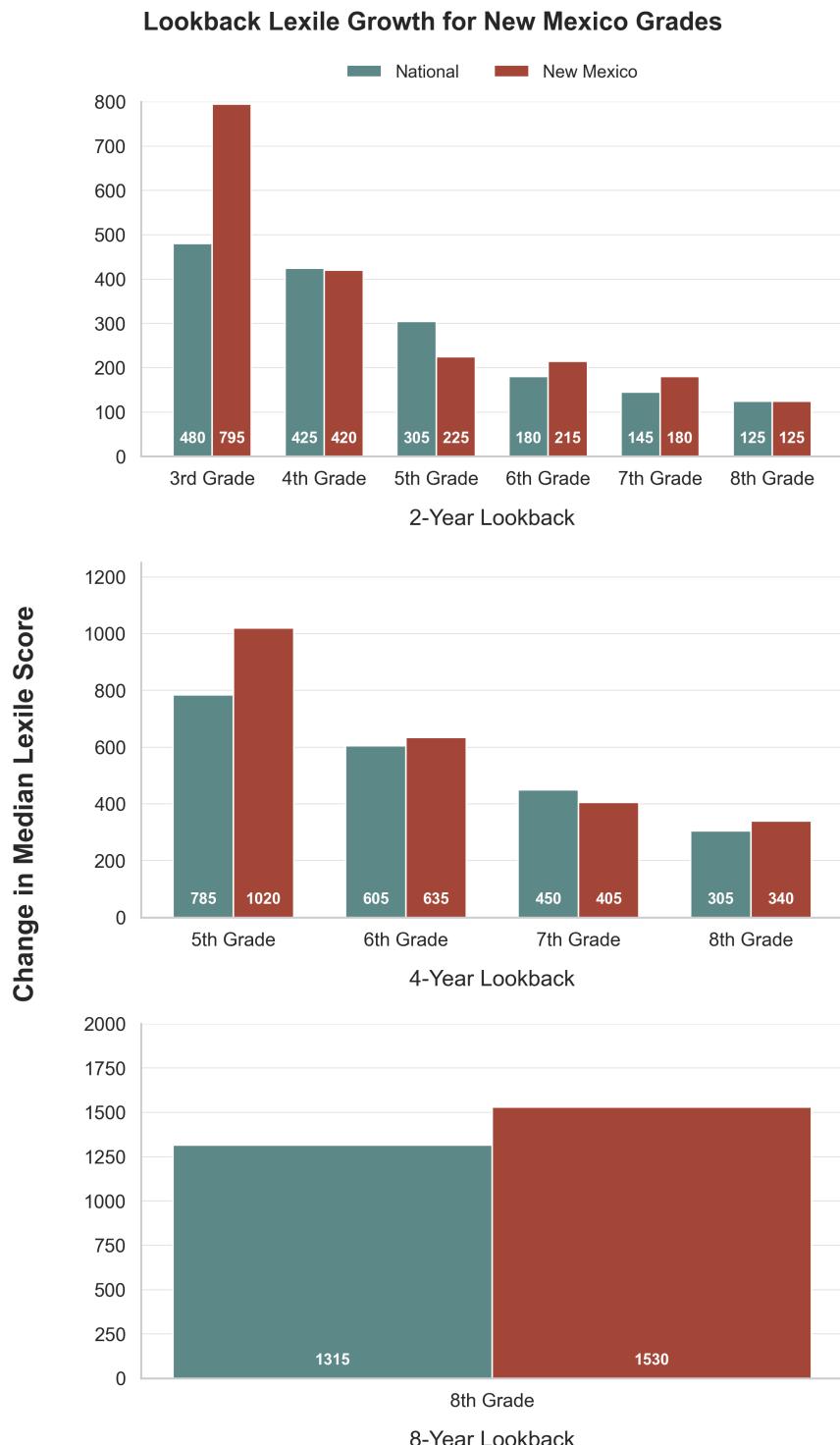
Figure 3: NM-MSSA ELA Lexile measures (Grades 3–8), Spring 2023–Spring 2025. Lexile score distributions from NM-MSSA Lexile scores from all participating districts, combining all grades. Vertical lines indicate the overall mean (solid) and median (dashed), while colored curves depict grade-specific normal distributions derived from observed means and standard deviations. Panel titles report total sample sizes per year. Outliers were removed using a $3 \times IQR$ criterion. This figure provides a concise, internally consistent snapshot of statewide NM-MSSA reading performance over recent years. See Table 10 for underlying data.

NM-MSSA Lexile Score Distributions

How does synthesizing multiple assessments onto a common Lexile scale alter our interpretation of individual students' reading growth? Longitudinal trajectories at the student level provide a richer and more nuanced perspective on literacy development across diverse assessment platforms. Each panel in Figure 4 presents event-level Lexile scores, capturing both inherent measurement variability and overarching trends. Ordinary least squares (OLS) lines summarize the general progression of each student over time. The three exemplars span five distinct assessment systems, NM-MSSA, iMSSA, NWEA MAP, i-Ready, and Renaissance—demonstrating that harmonizing these disparate measures within a unified Lexile framework reveals consistent growth trajectories that might otherwise appear erratic or regressive when viewed through a single-assessment lens. This approach underscores the interpretive clarity achieved through psychometric standardization.

By aggregating multiple assessment sources onto the Lexile scale, one can track individual student growth with greater temporal resolution than is not possible from a single annual or biennial score. The following examples illustrate the type of actionable insight, such as early identification of students requiring additional support or enrichment, that becomes accessible when districts and states integrate assessment data systematically.


Figure 4: Cross-assessment aggregation on the Lexile scale. Three students, all sixth graders, are shown with distinct starting points and growth patterns across NM-MSSA, iMSSA, NWEA MAP, i-Ready, and Renaissance assessments. All event-level scores are included (no annual filtering), with ordinary least squares trend lines summarizing each student's general trajectory. This visualization demonstrates how unifying multiple assessments on a shared Lexile scale enables a comprehensive, interpretable perspective on reading growth, facilitating comparisons across grades and identifying potential needs for targeted intervention or enrichment.

Figures 5 and 6 provide a complementary perspective on statewide reading performance by analytically distinguishing *performance level* from *growth*.

To shift the focus from static achievement to longitudinal growth, “lookback” changes in median Lexile scores are computed over two-, four-, and eight-year intervals Figure 5 . Methodologically, the two-year lookback for any given grade is computed as the difference between that grade’s median Lexile score and the median for the cohort two grades below (e.g., Grade 6 minus Grade 4), a procedure applied consistently across Grades 3–8. Interpreted as an inferred rate of progress, this metric reveals that New Mexico students exceed national growth in several key intervals, most notably 3rd graders in the two-year comparison, 5th graders in the four-year view, and 8th graders in the eight-year window. More broadly, four of the six two-year lookback values (Grades 3 and 6–8) and three of the four four-year comparisons equal or surpass their national counterparts. Crucially, in this context, a “higher” median reflects the magnitude of the computed lookback difference—that is, the estimated cumulative change over the specified interval, rather than the absolute performance level of the grade itself. Taken together, these patterns signal a clear upward trajectory in statewide reading development, with several grades exhibiting accelerated progress relative to national norms.

Figure 5: Lookback Lexile Growth. This figure shows 2-year, 4-year, and 8-year lookback changes in median Lexile scores, from all assessments, for New Mexico students, benchmarked against national medians (MetaMetrics, 2010–2019). These lookback measures provide a focused view of recent and cumulative growth, capturing the pace and direction of academic momentum across grades. See Table 11 for underlying data.

In contrast, a cross-sectional perspective is shown in Figure 6, which presents median Lexile scores for Grades 3–8 from AY 2020–2021 through AY 2024–2025. Because each point represents a different cohort, the relatively constant trends across years are expected and serve as a useful comparison to the dynamic growth patterns in Figure 5. Several grade-specific patterns emerge clearly in these raw medians (reported without error bands; see the Data Appendix C for annual numbers). Upper-grade medians (Grades 6–8) rise steadily across all five years, while early-grade performance, particularly in Grade 3, declines through AY 2023–2024 and shows only modest recovery in AY 2024–2025. Grade 5 exhibits a mid-series dip followed by a rebound in the final year, contributing to a widening performance gap between the lower and upper grades. The pronounced stagnation in Grades 3–4 is consistent with national evidence of pandemic-related disruptions to early literacy development, especially among students who experienced reduced or irregular Pre-K and early elementary instruction (26). When interpreted alongside the lookback analyses, however, these cross-sectional medians demonstrate that underlying growth trajectories in New Mexico generally align with, and in several grades modestly exceed, national norms. The eighth-grade cohort medians further illustrate how static snapshots may obscure sustained longitudinal improvement that becomes visible only when annual growth patterns are examined directly.

Figure 6: Shifting Performance Patterns in Median Lexile Scores (Grades 3–8) Annual median Lexile scores across all assessments for New Mexico students in Grades 3–8 from AY 2020–2025. Upper grades (6–8) rise steadily across the period, while lower grades decline through AY 2023–2024 with only modest recovery in AY 2024–2025. Overall, the patterns indicate widening gaps between early and later grades and reflect pandemic-related impacts on early literacy. See Table 12 for underlying data.

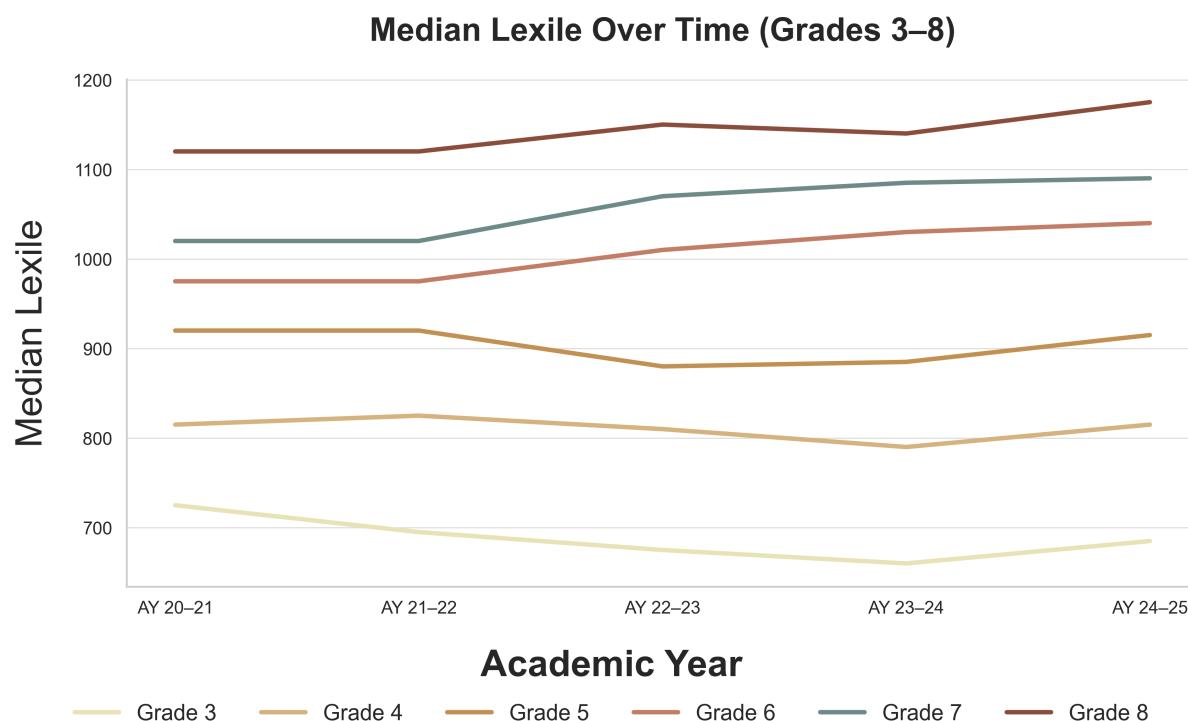
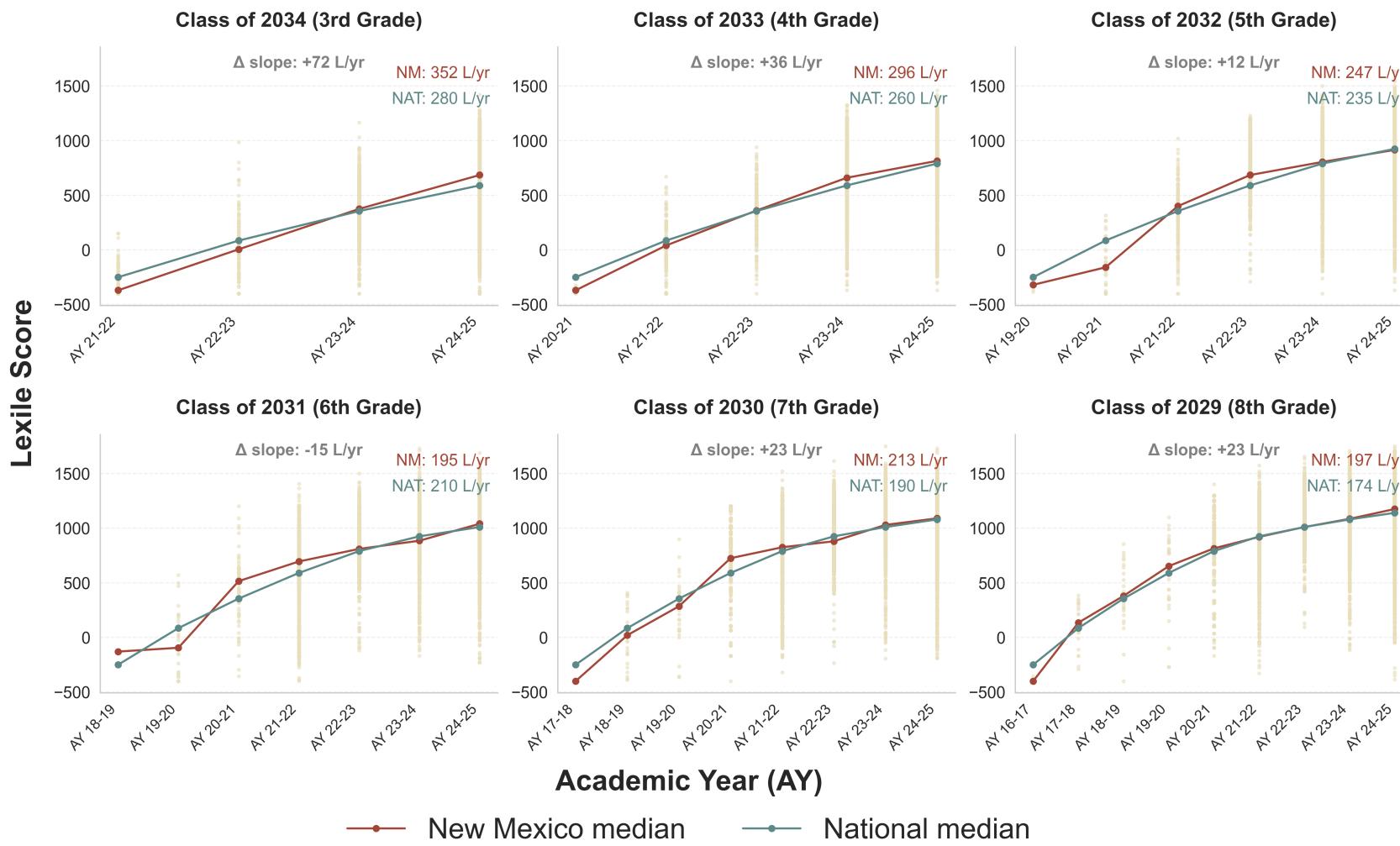


Figure 7 traces the longitudinal Lexile trajectories for New Mexico cohorts in Grades 3–8 in AY 2024–2025, the students who will form the high-school Classes of 2029 through 2034. Following each cohort backward from as early as kindergarten through their current grade, each point represents an individual student-year Lexile score drawn from participating New Mexico districts. The red line marks the New Mexico cohort median, capturing the central tendency of reading development at each stage. The blue line provides a national reference, plotting the winter 50th-percentile Lexile values from the MetaMetrics norms (2010–2019), thereby establishing a stable benchmark for cross-state comparison.

All cohort scores were assembled by aggregating every available district Lexile assessment for this group, including NM-MSSA (state summative score) and interim measures such as iMSSA, i-Ready, NWEA MAP, and Renaissance. These records were cleaned, merged, and collapsed into a single Lexile measure per student per academic year, with extreme outliers removed to ensure comparability across time. This process yields the unified longitudinal dataset, allowing us to trace both the overall shape of the cohort's reading development and the variability of individual trajectories. The cohort-year medians, juxtaposed with the national 50th-percentile benchmarks, show a pattern broadly aligned with national norms, offering little evidence of the large, persistent gaps often presumed in prior accounts. At the same time, the dispersion of individual student scores around each median reveals considerable heterogeneity within the cohort, and the year-to-year differences between New Mexico and national medians indicate that growth is not perfectly uniform across grades, even when overall levels remain comparable.


Interpreted against national norms, the cohort's performance reveals a more nuanced picture than is often portrayed. From a proficiency-oriented perspective, several grade levels align closely with or exceed national expectations: across the full span, cohorts in grade levels 3-5 and 7-8 are "on track," growing between roughly 12 and 72 Lexile points per year, exceeding national growth norms. Collectively, these patterns indicate that five out of six grades (3rd–5th and 7th–8th) are growing at or above national norms on a common scale, challenging narratives of a large and persistent state-level growth deficit.

Equally important, the dispersion of individual points around the median highlights the heterogeneity of reading development within the cohort, a feature obscured in grade-level cross-sectional analyses. By following the same students over time, this cohort-based approach provides more decision-relevant insight into patterns of progress, grade-specific inflection points, and the cumulative effects of instructional experiences, thereby offering a more precise diagnostic foundation for targeted interventions and system-level planning.

Figure 7: Lexile Growth Over Time for New Mexico Cohorts in Grades 3–8 in AY 2024–2025 (High School Classes of 2029–2034). Each point represents a student-year Lexile score from the relevant cohort, integrating all available assessment sources (NM-MSSA, iMSSA, i-Ready, NWEA MAP, Renaissance), with one Lexile value per student per year. The red line traces the cohort median Lexile, reflecting year-specific New Mexico data. The blue line shows the national median Lexile for each grade, based on MetaMetrics' published 50th-percentile winter norms (2010–2019). This longitudinal perspective reveals steady growth across grades and contextualizes New Mexico cohort performance relative to national benchmarks, including multiple years for certain cohorts in which the New Mexico median Lexile exceeds the MetaMetrics 50th percentile. See Table 13 for underlying data.

Lexile Growth Trajectories for New Mexico Cohorts (AY 24–25)

Lexile-to-State Proficiency Benchmarks

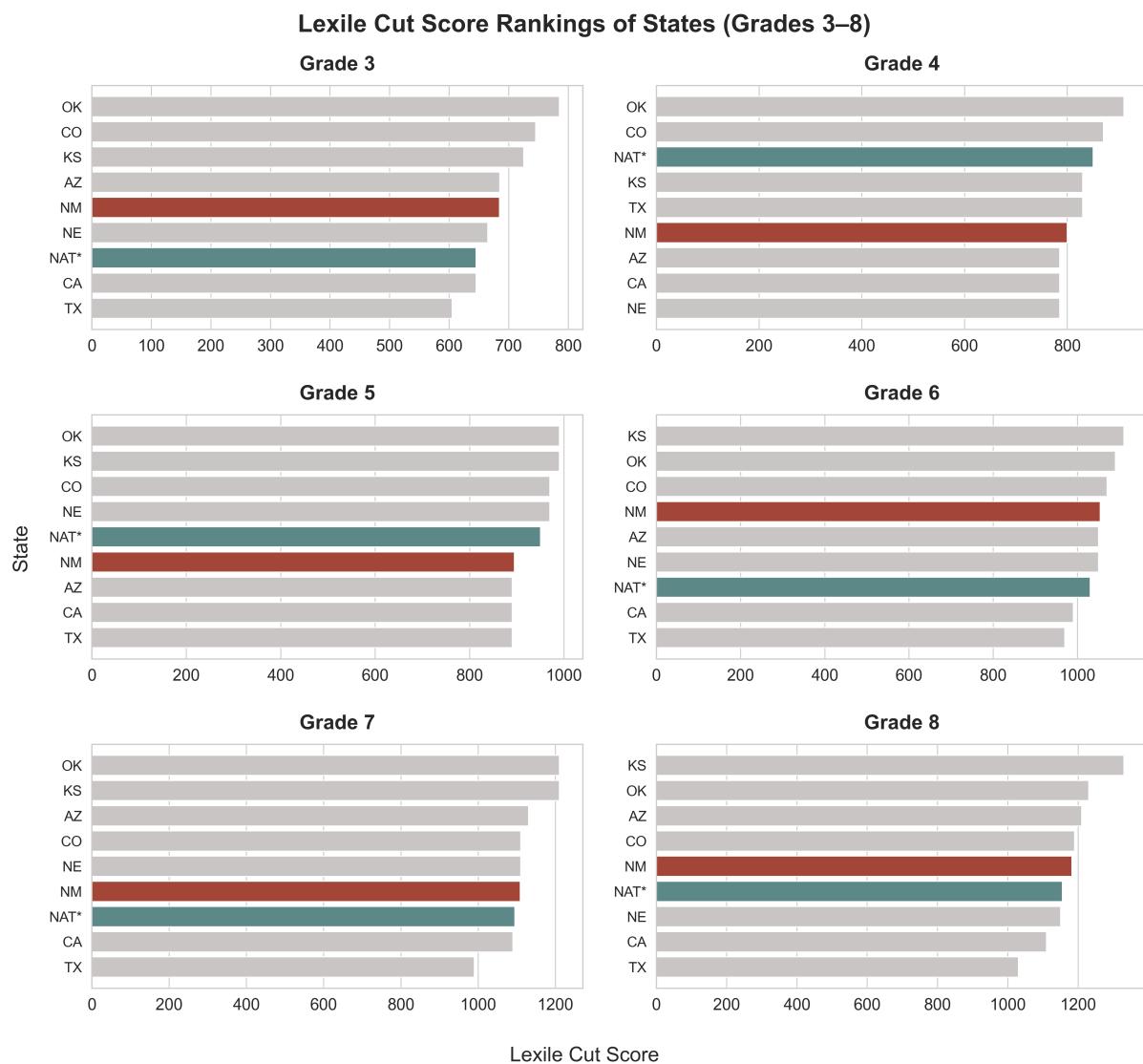
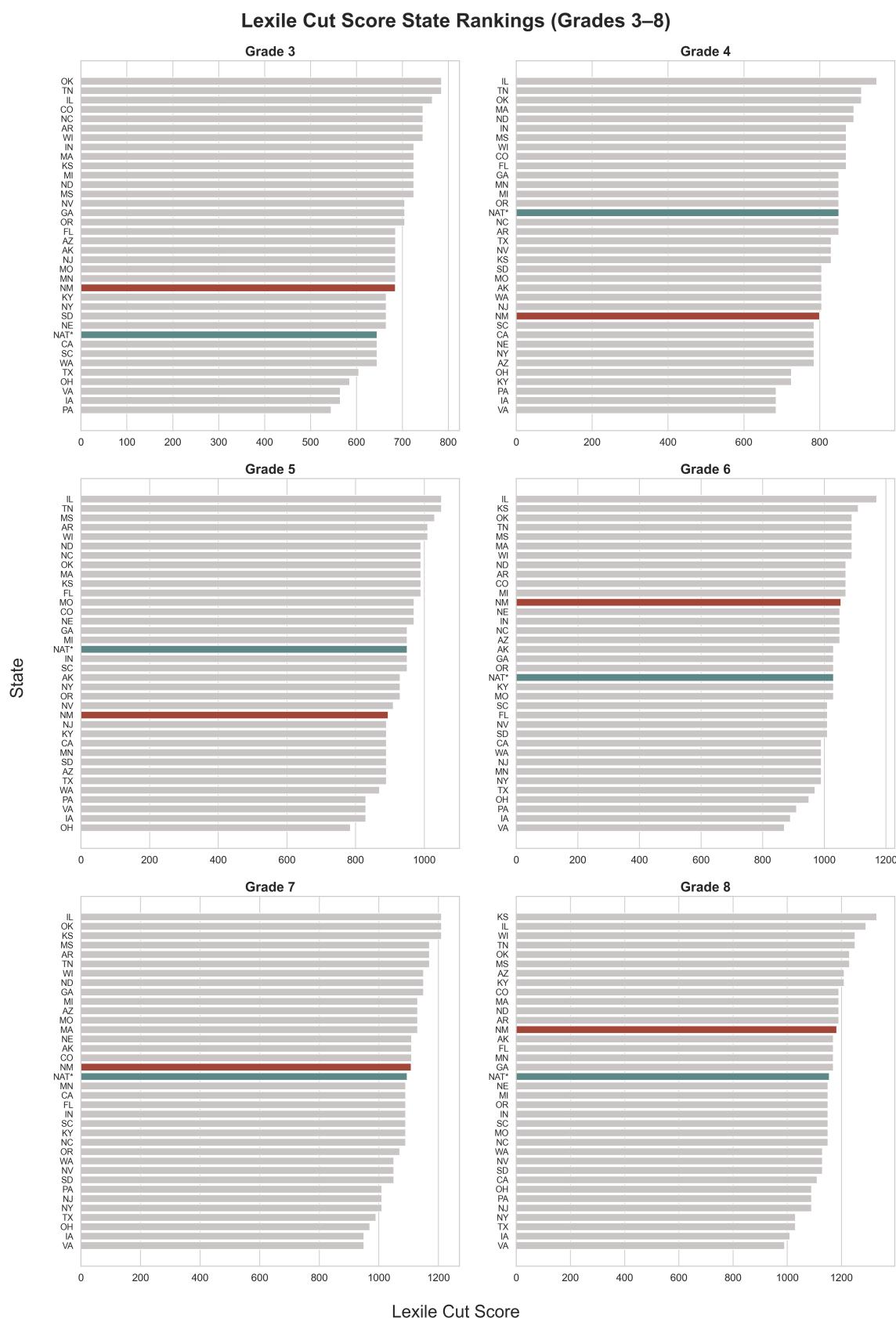

As the analysis shifts to cross-state comparisons, several limitations should be kept in view. First, state-to-MAP linking studies vary in timing and underlying samples, which introduces modest year-to-year variability into the RIT thresholds used for comparison. Second, national Lexile norms are derived from 2010–2019 data and may shift gradually as population characteristics evolve. Third, the district-level Lexile dataset used earlier in this report reflects participating districts rather than a full statewide census. While these considerations do not change the overall comparative patterns, they do caution against interpreting small differences between states as exact or definitive.

Figure 8 presents Lexile Cut Score Ranking plots for Grades 3–8, providing a comparative lens through which to evaluate New Mexico’s reading proficiency thresholds. In these visualizations, the state’s cut scores are identified in red, national median Lexile values in teal, and peer-state benchmarks in gray. As previously described in section State-Level Analysis, NM-MSSA cut scores were converted to Lexile measures through scaled score linkages, while Lexile cut scores for other states follow the crosswalk procedure outlined in Section Cross-State Comparisons Using MAP Growth as an Intermediary, which translate state-specific proficiency standards into Lexile measures (see Table 2 for data source).

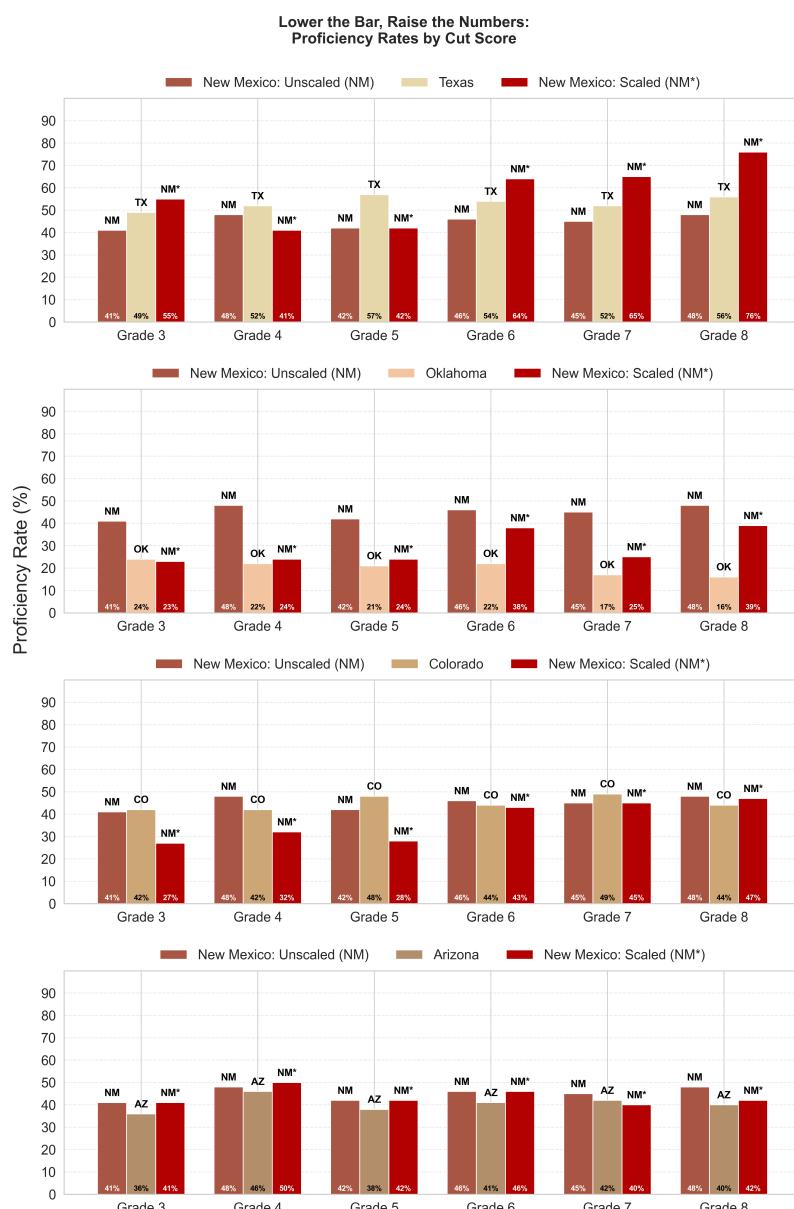
The plots convey how New Mexico’s standards compare with typical U.S. performance and the broader spectrum of policy-driven thresholds, supporting a nuanced assessment of the state’s standing within the national context of reading achievement. Six horizontal bar plots, one per grade, display each state’s Lexile cut score, with colors coded by category (e.g., NM, NAT*). Higher bars indicate more stringent proficiency thresholds, implying that fewer students meet the “proficient” designation, whereas lower bars suggest broader attainment. Interpreting these visualizations reveals several key patterns: the relative stringency of New Mexico’s standards vis-à-vis national medians, the magnitude of gaps between NM and peer states, and the consistency of these relationships across grades. Although these plots compare state proficiency cut scores to a national median, rather than to national proficiency thresholds, the national median serves as the best available common reference point on the Lexile scale and should be interpreted as an approximate benchmark rather than a one-to-one proficiency equivalent. In particular, New Mexico generally exceeds national median Lexile benchmarks, demonstrating that lower reported proficiency rates reflect elevated expectations rather than underperformance, and highlighting the state’s position as neither lowest nor out of alignment with national standards. Raw data underlying these plots are provided in Tables 2, 3, and 4, supporting transparent interpretation and reproducibility.

To further break down New Mexico’s reading proficiency expectations, we constructed Lexile Cut Score Ranking plots for each grade (Grades 3–8) (Figure 9). These visualizations juxtapose New Mexico’s NM-MSSA-based cut scores (highlighted in red) against national Lexile norms (teal bars) and those of 34 other states (gray bars), allowing a clear assessment of whether the state’s thresholds fall above, below, or near the national median. Complementary plots (Figure 8) focus on neighboring states, including Oklahoma, Kansas, Arizona, Colorado, Nebraska, California, and Texas, providing a regional perspective on comparative standards. Across Grades 3–8, the Lexile equivalents of New Mexico’s proficiency cut scores exceed national median Lexile values by approximately 13-39L, depending on grade. These gaps place New Mexico among the more rigorous states in terms of policy-defined reading expectations and help explain why reported proficiency rates appear lower even when student performance levels align with national patterns.


Figure 8: Setting the Standard: New Mexico Relative to National and Peer-State Lexile Thresholds. Lexile Cut Score Rankings for Grades 3–8 emphasize New Mexico's performance (red) relative to national Lexile norms (teal) and peer-state cut scores (gray). NAT* indicates the national norms benchmark (2010–2019 medians), which is different than in the 2025 NWEA state crosswalks, so we mark it with an asterisk for clarity. From NWEA state–MAP linking studies (24) using matched samples (students who took both tests); N varies by state/grade, typically in the thousands.

New Mexico NM-MSSA Standards are Stronger than Other States' Assessment Standards: A Lexile Crosswalk Heuristic Exercise

Figure 10 presents a regional thought experiment that translates New Mexico's literacy performance into the proficiency standards of neighboring states, providing a benchmark comparison, and addressing the question: **If New Mexico students were evaluated under neighboring states' standards, how would proficiency rates for AY 2024-2025 change?** In each panel, the left-aligned light-red bar depicts New Mexico's proficiency under its own standards, the gold bar in the center shows the published rates for the comparison state, and the right-aligned dark-red bar estimates how New Mexico students would perform if held to that state's thresholds. For instance, while New Mexico's raw NM-MSSA proficiency rates may not surpass Texas's, the projected rates


Figure 9: Lexile Cut Score Rankings by Grade. Lexile cut scores mapped from the NM-MSSA and from other states' ELA assessments show that New Mexico comparatively adopts more stringent proficiency standards.

under Texas's standards are comparable or higher in Grades 3, 6, 7, and 8. Conversely, in cases such as Colorado at the elementary level, New Mexico students are projected to underperform when mapped to those state-specific thresholds. This exercise is intentionally hypothetical and directional, illustrating that direct comparisons of raw proficiency rates across states are inherently misleading when each state defines excellence differently. To operationalize this comparison, we applied a Lexile-based alignment to estimate how New Mexico students' NM-MSSA scores would be classified under alternative state proficiency standards. For each grade (Grades 3–8), we computed two metrics: (1) **Unscaled**, the official Spring 2025 NM-MSSA proficiency rate, and (2) **Scaled**, the estimated proficiency rate obtained by reclassifying New Mexico students using the comparison state's Lexile threshold (see Appendix A for exact computation). All comparison benchmarks use officially published 2025 state proficiency rates (see Appendix B), and grade-level sample sizes correspond to those reported by the respective Departments of Education (16, 27, 30, 31, 32).

This heuristic framework, initially inspired by the Texas STAAR Report (28), produces predicted Lexile thresholds corresponding to each state's proficiency cut scores, facilitating direct, standardized comparisons across jurisdictions. Visualizations of these relationships, including comparative bar and distribution plots, underscore that reported proficiency rates are a function not only of student performance but also of the relative stringency of assessment standards. The analysis thus highlights the importance of contextualizing raw proficiency measures within the rigor of the underlying assessment framework.

Figure 10: Lower the Bar, Raise the Numbers: New Mexico Proficiency Re-expressed Under Neighboring States' Standards (2025). Panels 8A–8D benchmark New Mexico against neighboring states using published 2025 ELA proficiency rates for Grades 3–8. Each panel corresponds to one state comparison: Texas (8A), Oklahoma (8B), Colorado (8C), and Arizona (8D). For each grade within a panel, three bars are shown: **Left (Light Red)**- New Mexico: Unscaled, the official Spring 2025 NM-MSSA proficiency rate; **Middle (Gold)**- [State] Published, the corresponding state's reported 2025 proficiency rate; **Right (Dark Red)**- New Mexico: Scaled (under [State]), the estimated proportion of New Mexico students who would be classified as proficient if evaluated against the neighboring state's standards. The scaled value is calculated by applying a grade-specific delta derived from the Lexile-based mapping analysis, sourced from Lexile scores across all assessment types. Grade-level Ns are consistent with the respective Department of Education publications. This visualization illustrates how differences in proficiency thresholds, rather than actual student performance, account for apparent gaps in reported proficiency across states. See Table ?? through Table ?? for the underlying data.

Chapter 4: Conclusions

New Mexico's literacy landscape reflects both meaningful progress and sustained growth across multiple assessment platforms. Longitudinal analyses, benchmarked through the Lexile framework, reveal that students are advancing steadily, demonstrating not only the effectiveness of targeted interventions but also the impact of rigorous state standards. By integrating data from diverse assessments onto a common Lexile scale, these findings provide a temporally coherent and system-sensitive portrayal of reading development, capturing both grade-specific trajectories and broader statewide patterns. The subsequent conclusions distill these insights into two complementary dimensions—*growth*, which situates student progress relative to national norms, and *proficiency*, which contextualizes achievement against the rigor of state and regional standards—thereby offering a comprehensive synthesis of New Mexico's literacy outcomes.

New Mexico's Readers are Seeing Strong Growth

New Mexico's reading development is best understood as a trajectory rather than a static snapshot. When Lexile growth is examined on its own terms, distinct from proficiency thresholds or grade-level expectations, it provides a clear, valid indicator of student progress.

Taken together, the longitudinal evidence reveals a stable and upward-trending pattern of reading growth across New Mexico. NM-MSSA alone offers an internally consistent view of year-over-year progress, but incorporating the full range of district assessment systems provides a deeper, more temporally sensitive picture of how students advance across grades. When NM-MSSA, iMSSA, i-Ready, NWEA MAP, and Renaissance data are unified on a common Lexile scale, the resulting trajectories exhibit steady, coherent growth that persists across cohorts and assessment types, not the variability or regression that can occur when each system is interpreted in isolation.

This broader perspective clarifies an essential distinction between level and growth. Absolute medians can appear flat in certain grades, particularly those affected by COVID-era disruptions, yet multi-year lookback analyses reveal substantial forward momentum, with middle-grade students showing especially strong gains. These Lexile-based growth patterns consistently align with, and in several grades slightly exceed, national expectations.

Finally, cohort-based analysis reinforces these findings. When tracing individual student groups across time, New Mexico's reading growth is comparable to national trajectories, and in some years surpasses the national median. This cohort lens highlights how cross-sectional comparisons can obscure genuine progress: students may appear behind when judged only by status measures, yet their year-to-year advancement shows meaningful and sustained improvement.

In sum, the unified Lexile analyses demonstrate that New Mexico's students are advancing at a pace broadly consistent with or outpacing national growth patterns, despite cross-sectional proficiency rates that appear low when interpreted through NM-MSSA alone. Once multiple assessments are placed on a common Lexile scale, statewide growth trajectories reveal steady, grade-appropriate gains, with the majority of the grade 3–8 cohorts, namely grades 3–5 and 7–8, exhibiting growth at or above national benchmarks, consistently 12–72 Lexiles per year faster than national norms. At the same time, New Mexico's proficiency thresholds are demonstrably more rigorous than those of most peer states, typically 13–39L above the national median, which means that lower reported proficiency reflects elevated expectations rather than weaker performance. Viewed together, the evidence portrays a literacy system characterized by meaningful longitudinal progress and comparatively high standards, made visible only when status and growth are disentangled and integrated through a unified Lexile framework.

New Mexico is a High Standards State for Literacy

A comprehensive understanding of statewide reading outcomes requires not only examining student performance but also situating those outcomes within the context of the rigor and policy-driven expectations that define proficiency; the following sub-conclusions synthesize evidence on how New Mexico's standards compare to national norms and neighboring states, revealing both the challenges and strengths inherent in interpreting reported proficiency rates.

New Mexico's Lexile Standards for Success Exceed National Norms

The cross-state analyses provide clear evidence that New Mexico's reading proficiency standards are comparatively more rigorous than those employed in most other states. When state-specific proficiency cut scores are translated onto a common Lexile scale, New Mexico's thresholds consistently exceed the national median across Grades 3–8 and frequently surpass the expectations set by neighboring and peer states. This pattern reflects a systematically elevated standard for demonstrating grade level reading proficiency, rather than isolated differences attributable to particular grades or cohorts.

These results carry significant interpretive implications. First, New Mexico's comparatively lower reported proficiency rates should be understood in light of the higher Lexile demands embedded within its assessment system. The divergence between New Mexico's cut-score Lexile equivalents and national medians indicates that fewer students will meet the "proficient" designation, not because of weaker achievement, but because the bar for proficiency is substantively higher. Second, the cross-state comparisons illustrate the substantial variability in national proficiency expectations. States employ markedly different Lexile thresholds to represent ostensibly equivalent performance categories, making unadjusted proficiency percentages an unreliable basis for cross-jurisdictional comparison.

Taken together, the evidence from Figures 8 and 9 underscores the importance of contextualizing proficiency outcomes within the rigor of each state's assessment framework. New Mexico's position among the more demanding states suggests that its reported performance should be interpreted not as an indicator of relative underperformance, but rather as a function of higher expectations, with the Lexile equivalents of New Mexico's proficiency cut scores exceeding national median expectations in Grades 3, 6, 7, and 8 by an average of roughly +26 Lexile points. This pattern highlights the comparatively rigorous proficiency bar set by the state, particularly at the beginning of elementary school and throughout middle school. This finding reinforces the necessity of using common interpretive scales, such as Lexile measures, when comparing statewide reading outcomes and evaluating the alignment of proficiency standards across the United States.

Align the Expectations, and the Gap Disappears: New Mexico Is Not Last

The benchmarking analysis, employing Lexile-based crosswalks, demonstrates that New Mexico's proficiency rates are substantially influenced by the relative stringency of its proficiency cut scores, rather than by systematically lower levels of student reading performance. When NM-MSSA scale scores are re-expressed using the established Lexile thresholds of neighboring states, New Mexico's projected proficiency rates increase markedly across most grades, often surpassing the comparison states' published rates 10. This pattern indicates that the observed disparities in unscaled proficiency percentages are primarily attributable to differences in state-defined performance standards.

Methodologically, this exercise leverages a standardized Lexile framework to hold the underlying

measurement scale constant while varying the policy threshold applied for classification. Because each state defines “proficient” at a distinct Lexile level, sometimes differing by several hundred Lexile points (roughly equivalent to several years of typical reading growth), the resulting proficiency rates cannot be interpreted as commensurate indicators of student achievement without accounting for these shifts in classification criteria. The grade-specific deltas observed in the reclassification analysis thus provide empirical evidence that cross-state proficiency comparisons are confounded by heterogeneity in benchmark rigor.

It is important to underscore that this approach yields a directional, not inferential, alignment: the re-expressed proficiency rates do not claim to evaluate the relative rigor or content validity of each state’s standards, nor do they imply equivalence in curricular emphasis or assessment design. Instead, they demonstrate that when New Mexico students’ performance is evaluated under alternative proficiency cut scores, the classification outcomes change in ways that reflect systematic benchmark differences rather than variations in underlying student skill distributions.

Collectively, these findings reinforce a central psychometric principle: proficiency rates are jointly determined by student performance and policy-defined proficiency cut scores, and therefore cannot be used as direct comparative indicators across states without appropriate standardization. When normalized to a common Lexile metric, New Mexico’s performance aligns closely with that of neighboring states, contradicting interpretations that position New Mexico as an outlier in terms of student reading achievement. Instead, the state’s lower unadjusted proficiency rates primarily index the elevated expectations embedded in its assessment system.

Overall, the analyses in this report show that New Mexico’s literacy trajectory is characterized by steady growth under comparatively rigorous expectations. When reading performance is evaluated on a common Lexile® scale, New Mexico students demonstrate progress that is broadly aligned with national patterns, with some cohorts meeting or exceeding national benchmarks. At the same time, New Mexico’s proficiency thresholds correspond to higher Lexile levels than those used by most peer states, meaning that the state’s lower reported proficiency rates primarily reflect elevated expectations rather than diminished student achievement.

These findings underscore a critical reframing: New Mexico is not a low-performing outlier; its standards are simply more demanding. As the state continues to strengthen structured literacy initiatives and expand data-informed practices, this combination of rising performance and high expectations positions New Mexico to sustain long-term improvement and close gaps that have historically appeared only when comparing unadjusted proficiency rates across states.

Scope and Limitations

While the data sampling in this report includes geographically diverse districts across all REC regions, it does not constitute a full statewide census. The sample represents 29 of New Mexico’s 89 districts, and future studies could expand participation across additional public and private school systems. Several contextual variables, such as socioeconomic indicators, attendance, and other demographic characteristics, were inconsistently available, limiting the ability to integrate these factors systematically into growth or proficiency analyses.

State-level benchmarking relied on publicly available assessment data and previously published state-to-MAP linking studies. Although these sources enable broad comparisons, they lack the granularity of district-level records and vary in publication year and sample composition. As a result, cross-state comparisons should be understood as conservative estimates that assume temporal stability across the underlying linkages.

The Lexile-based alignment used to approximate how New Mexico students would be classified under other states’ proficiency standards provides a standardized interpretive framework, but it offers a directional, heuristic comparison rather than a definitive measure of content rigor. Because state summative assessments differ in design, administration year, and alignment studies,

re-expressed proficiency rates should not be interpreted as exact equivalents across jurisdictions. While iStation's ISIP scores would have been a valuable addition to this analysis, especially given that ISIP serves as the primary K–2 interim assessment for many districts, as of the writing of this report, most districts no longer have access to historical ISIP results. This appears to stem from the recent deprecation of the prior iStation portal following the transition to the new iStation–Amira merged platform, which did not retain earlier years' ISIP assessment scores.

Finally, data availability varies across districts and grades, which may affect the precision of certain growth estimates. Future expansions of this work could incorporate Quantile measures, more comprehensive demographic variables, rural–urban disaggregation, and additional Martinez/Yazzie indicators to support deeper contextualization of statewide literacy patterns.

Implications

The findings from this analysis point to several actionable implications for school and district leaders, state policymakers, and future research efforts. By interpreting New Mexico's literacy trends through a unified Lexile framework, the results highlight where current systems are working, where strategic investment can accelerate progress, and how growth-centered approaches can complement the state's rigorous proficiency expectations. The following recommendations translate these insights into practical steps for strengthening literacy outcomes statewide.

Implications for School and District Leadership

The findings underscore the importance of systems and practices that prioritize longitudinal growth, rather than isolated snapshots of proficiency. To translate these insights into instructional improvement, district and school leaders should prioritize:

1. Integrated Use of Multiple Assessments

Continue using NM-DASH and related data systems to triangulate information from NM-MSSA/iMSSA, NWEA, i-Ready, Renaissance, and Lexile measures. Integrated data use provides a more accurate identification of student needs and reduces the risk of misinterpretation associated with any single assessment.

2. Early-Grade Intervention and Progress Monitoring

Because lower elementary cohorts experienced the sharpest COVID-related disruptions, districts should intensify progress monitoring in Grades K–4 and strengthen structured literacy supports in these foundational early years.

3. Cohort-Level Tracking for Resource Allocation

Cohort-based Lexile trajectories can reveal emerging gaps that are not visible in cross-sectional metrics. Districts should use cohort patterns to target resources, such as reading interventionists, tutoring programs, or summer learning, where they will have the highest return.

Implications for State Policy and Systems-Level Decision-Making

The study's findings demonstrate that New Mexico's rigorous proficiency standards, combined with steady growth, reflect a system moving in the right direction. Policymakers can reinforce this trajectory through:

1. Investment in Longitudinal Data Systems

Tools such as NM-P20W+ enable the tracking of students across years, districts, and assessments. Continued investment in their usability, interoperability, and district-facing analytics will strengthen statewide capacity for evidence-driven decision-making.

2. Policy Alignment Around Growth as a Core Success Metric

Because New Mexico's higher proficiency thresholds can obscure genuine progress, accountability frameworks should elevate growth indicators alongside proficiency. This shift better reflects student learning trajectories and supports equitable evaluation across districts.

3. Support for Consistent Cross-Assessment Literacy Practices

Maintaining Lexile as a common interpretive scale can help the state ensure consistent expectations across interim, diagnostic, and summative assessments, particularly as structured literacy initiatives mature.

Future Directions for Research and Statewide Improvement

This analysis highlights several opportunities to expand and deepen statewide literacy evaluation:

1. Securing Full Statewide Participation

Including all districts in New Mexico in future iterations would yield a truly comprehensive view of statewide reading proficiency, particularly in regions currently underrepresented.

2. Expanding the Analytic Framework

Future studies could incorporate Quantile measures, rural–urban comparisons, and disaggregated analyses for socioeconomic status, English learners, students with disabilities, and Martinez–Yazzie subgroups.

3. Enhancing Cross-State Benchmarking

Collaboration with additional state education agencies could enable access to more granular assessment data, supporting more precise national benchmarking and improving alignment across linking studies.

Together, these implications reinforce a central message — New Mexico is well-positioned to translate high standards into sustained literacy improvement, provided that state and district systems continue to emphasize longitudinal growth, coherent data use, and strategic, equity-focused intervention.

Closing

Across multiple assessment systems and longitudinal trajectories, the evidence indicates that New Mexico's students are demonstrating steady growth under comparatively rigorous proficiency expectations. The conclusions that follow integrate these two dimensions, growth and proficiency, to clarify what the data reveal about statewide progress. New Mexico's literacy landscape is characterized by steady growth and rigorous expectations. When viewed through a unified Lexile-based lens, the state's students perform comparably to national norms, and in some grades, exceed them. These findings reframe statewide performance narratives and highlight the importance of maintaining high standards while investing in the tools, data systems, and supports that sustain long-term improvement.

Appendices

A: Key Statistical Concepts and Equations

This appendix summarizes key statistical concepts commonly used in educational data analysis, providing readers with concise understanding of the methods underlying reported findings.

1. Mean and Standard Deviation

Mean: Average score

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Standard deviation: Spread of scores

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

Assumption: Data measured consistently; roughly symmetric.

2. Growth Measures

$$\text{Growth} = \text{Score}_{\text{end}} - \text{Score}_{\text{start}}, \quad \text{Percent Growth} = \frac{\text{Score}_{\text{end}} - \text{Score}_{\text{start}}}{\text{Score}_{\text{start}}} \times 100$$

Assumption: Changes reflect learning, not measurement error.

3. Correlation

Pearson correlation:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

Assumptions: Linear relationship; approximate normality.

4. Linear Regression and OLS

Regression predicts outcomes from predictors:

$$y = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \epsilon$$

Assumptions: Linearity, independent errors, constant variance, normality.

In this study, a global OLS model verified linearity between Lexile and NM-MSSA scores. Grade-specific models (Grades 3–8) allowed distinct slopes/intercepts, producing high R^2 and tight scatterplot fits.

For grade g , Lexile equivalent of the NM-MSSA Proficient lower bound S_g :

$$\hat{L}_g = \hat{\beta}_{0,g} + \hat{\beta}_{1,g} \times S_g$$

5. Handling Outliers

- **Winsorizing:** Replace extreme values with nearest valid score.

- **Trimming:** Remove extreme values beyond a threshold.

6. Standard Error and Confidence Intervals

$$SE = \frac{\sigma}{\sqrt{n}}, \quad 95\% \text{ CI: } \bar{x} \pm 1.96 \times SE$$

Assumption: Random, sufficiently large sample; approximately normal.

7. Practical Notes for Policymakers

- Summarizes trends and averages, not individual predictions.
- Growth and correlation measures depend on data quality.
- Model assumptions affect reliability; interpret with context.
- Benchmark comparisons (Lexile translations, OLS mapping) offer relative insights, not causal conclusions.

7. Computing Theoretical Proficiency

For each grade g , proficiency under benchmark b is defined as

$$\text{Rate}[b, g] = \frac{\#\{\text{students with Lexile} \geq c[b, g]\}}{\#\{\text{total students in grade } g\}} \times 100.$$

The crosswalk delta is

$$\Delta[g] = c[\text{state}, g] - c[\text{NM}, g],$$

which represents the Lexile gap between New Mexico's cut score and that of the comparison state (Texas, Oklahoma, Colorado, or Arizona). Applying $\Delta[g]$ to the NM-MSSA Lexile distribution yields the **Scaled** proficiency rate—an estimate of the proportion of New Mexico students who would be classified as proficient under neighboring states' standards.

8. Practical Notes for Policymakers

- Summarizes trends and averages, not individual predictions.
- Growth and correlation measures depend on data quality.
- Model assumptions affect reliability; interpret with context.
- Benchmark comparisons (Lexile translations, OLS regression, theoretical proficiency mapping) offer relative insights, not causal conclusions.

B: Summary of Crosswalk Data Linking State Assessments, MAP Growth, and Lexile Measures

To enable consistent cross-state comparisons, this appendix details the two-stage methodology employed to translate state-specific proficiency standards into Lexile measures, using the NWEA MAP Growth RIT scale as an intermediary. The MAP Growth RIT scale serves as a robust bridge, given its empirical alignment with both state assessments and the Lexile framework. Table 2 presents the estimated Lexile proficiency cut scores for Grades 3–8 across the participating states, while Table 3 provides the official NWEA–MetaMetrics RIT-to-Lexile conversion table underlying this translation. Table 4 summarizes key crosswalk data from the 2025 cohort of linking studies, and Table 5 enumerates all 35 states included in the analysis. Collectively, these resources establish a transparent, reproducible framework for converting state assessment metrics into Lexile units.

Table 2: *Figure 8 (Lexile Cut Score Rankings by Grade for Neighboring States) and 9 (Lexile Cut Score Rankings by Grade) Data, Estimated state-level Lexile proficiency thresholds (Grades 3–8) derived from NWEA crosswalk values. New Mexico (NM) values reflect Evress regression estimates from district-level NM-MSSA Lexile data. Refer to tables 3 and 4.*

State	3rd	4th	5th	6th	7th	8th
AL	605	830	890	970	990	1030
AK	685	805	930	1030	1110	1170
AZ	685	785	890	1050	1130	1210
AR	745	850	1010	1070	1170	1190
CA	645	785	890	990	1090	1110
CO	745	870	970	1070	1110	1190
CT	680	805	920	1010	1060	1120
DE	615	740	890	960	1010	1060
FL	685	870	990	1010	1090	1170
GA	705	850	950	1030	1150	1170
HI	690	820	900	1000	1070	1150
ID	630	755	885	980	1025	1100
IL	765	950	1050	1170	1210	1290
IN	725	870	950	1050	1090	1150
IA	565	685	830	890	950	1010
KS	725	830	990	1110	1210	1330
KY	665	725	890	1030	1090	1210
LA	630	725	895	960	1050	1130
MD	705	835	970	1050	1110	1180
MA	725	890	990	1090	1130	1190
MI	725	850	950	1070	1130	1150
MN	685	850	890	990	1090	1170
MS	620	700	850	970	1030	1080
MO	715	870	1010	1110	1210	1330
NC	695	805	950	1030	1070	1150
ND	665	725	830	910	1010	1090
OH	585	725	785	950	970	1090
OK	620	740	840	1010	1060	1150
OR	705	850	930	1030	1070	1190
PA	545	685	950	1030	1095	1155
SC	680	810	920	1010	1070	1150
TN	785	910	1050	1090	1170	1250
TX	605	830	890	970	990	1030
VA	565	685	830	870	950	990
WA	645	805	950	1010	1090	1150
WI	685	805	890	1010	1090	1170
WY	620	745	890	1010	1030	1130
NM (Evress)	685	800	895	1054	1109	1182
Lexile Norms 50th Percentile	645	850	950	1030	1095	1155

Table 3: Converting NWEA MAP Growth Reading RIT to Lexile Measures using the official NWEA–MetaMetrics conversion table (24).

MAP Growth Reading RIT Score	Lexile Lower Range	Lexile Upper Range
100–144	BR400L	BR400L
145	BR400L	BR395L
146	BR400L	BR375L
147	BR400L	BR355L
148	BR400L	BR335L
149	BR400L	BR315L
150	BR400L	BR295L
151	BR400L	BR275L
152	BR400L	BR255L
153	BR385L	BR235L
154	BR365L	BR215L
155	BR340L	BR190L
156	BR320L	BR170L
157	BR300L	BR150L
158	BR280L	BR130L
159	BR260L	BR110L
160	BR240L	BR90L
161	BR220L	BR70L
162	BR200L	BR50L
163	BR180L	BR30L
164	BR160L	BR10L
165	BR140L	10L
166	BR120L	30L
167	BR100L	50L
168	BR80L	70L
169	BR60L	90L
170	BR40L	110L
171	BR20L	130L
172	0L	150L
173	20L	170L
174	40L	190L
175	60L	210L
176	80L	230L
177	100L	250L
178	120L	270L
179	140L	290L
180	160L	310L
181	180L	330L
182	205L	355L
183	225L	375L
184	245L	395L
185	265L	415L
186	285L	435L
187	305L	455L
188	325L	475L
189	345L	495L
190	365L	515L
191	385L	535L
192	405L	555L
193	425L	575L
194	445L	595L
195	465L	615L
196	485L	635L
197	505L	655L
198	525L	675L
199	545L	695L
200	565L	715L
201	585L	735L
202	605L	755L
203	625L	775L
204	645L	795L

MAP Growth Reading RIT Score	Lexile Lower Range	Lexile Upper Range
205	665L	815L
206	685L	835L
207	705L	855L
208	730L	880L
209	750L	900L
210	770L	920L
211	790L	940L
212	810L	960L
213	830L	980L
214	850L	1000L
215	870L	1020L
216	890L	1040L
217	910L	1060L
218	930L	1080L
219	950L	1100L
220	970L	1120L
221	990L	1140L
222	1010L	1160L
223	1030L	1180L
224	1050L	1200L
225	1070L	1220L
226	1090L	1240L
227	1110L	1260L
228	1130L	1280L
229	1150L	1300L
230	1170L	1320L
231	1190L	1340L
232	1210L	1360L
233	1230L	1380L
234	1250L	1400L
235	1275L	1425L
236	1295L	1445L
237	1315L	1465L
238	1335L	1485L
239	1355L	1505L
240	1375L	1525L
241	1395L	1545L
242	1415L	1565L
243	1435L	1585L
244	1455L	1605L
245	1475L	1625L
246	1495L	1645L
247	1515L	1665L
248	1535L	1685L
249	1555L	1705L
250	1575L	1725L
251	1595L	1745L
252	1615L	1765L
253	1635L	1785L
254	1655L	1805L
255	1675L	1825L
256	1695L	1825L
257	1715L	1825L
258	1735L	1825L
259	1755L	1825L
260	1775L	1825L
261	1800L	1825L
262	1820L	1825L
263–300	1825L	1825L

Table 4: Aggregated dataset showing the alignment between state summative assessments and MAP Growth, including the MAP RIT cut scores associated with each state's proficiency criteria. Refer to hyperlinks in Table 5 for raw cut scores.

State	Grade	N	MAP Cut	State Test Cut	Accuracy	FP rate	FN rate	Sensitivity	Specificity	Precision	AUC
TX	3	8,037	197	1,467	0.80	0.21	0.19	0.81	0.79	0.80	0.80
	4	6,871	208	1,552	0.82	0.18	0.18	0.82	0.82	0.80	0.82
	5	6,735	211	1,592	0.83	0.22	0.13	0.87	0.78	0.83	0.82
	6	6,870	215	1,634	0.82	0.20	0.15	0.85	0.80	0.81	0.82
	7	7,100	216	1,669	0.84	0.20	0.12	0.88	0.80	0.83	0.84
	8	5,971	218	1,698	0.83	0.25	0.12	0.88	0.75	0.82	0.82
MA	3	2,389	203	500	0.81	0.16	0.25	0.75	0.84	0.71	0.88
	4	2,650	211	500	0.81	0.16	0.23	0.77	0.84	0.75	0.89
	5	2,516	216	500	0.82	0.16	0.20	0.80	0.84	0.75	0.89
	6	2,045	221	500	0.83	0.12	0.26	0.74	0.88	0.76	0.90
	7	1,414	223	500	0.83	0.13	0.24	0.76	0.87	0.76	0.90
	8	1,218	226	500	0.81	0.14	0.30	0.70	0.86	0.72	0.89
NY	3	16,779	200	450	0.83	0.13	0.23	0.77	0.87	0.82	0.82
	4	17,326	206	450	0.83	0.13	0.22	0.78	0.87	0.84	0.82
	5	17,136	213	450	0.82	0.14	0.22	0.78	0.86	0.81	0.82
	6	19,066	216	450	0.83	0.13	0.23	0.77	0.87	0.82	0.82
	7	19,255	217	450	0.81	0.15	0.23	0.77	0.85	0.84	0.81
	8	17,747	218	450	0.82	0.16	0.19	0.81	0.84	0.84	0.82
GA	3	12,930	202	525	0.84	0.15	0.17	0.83	0.85	0.80	0.92
	4	14,537	209	525	0.84	0.15	0.18	0.82	0.85	0.80	0.92
	5	13,826	214	525	0.83	0.18	0.16	0.84	0.82	0.79	0.92
	6	14,545	218	525	0.83	0.15	0.20	0.80	0.85	0.82	0.91
	7	11,752	224	525	0.84	0.12	0.21	0.79	0.88	0.80	0.92
	8	10,096	225	525	0.82	0.13	0.23	0.77	0.87	0.84	0.90
VA	3	3,021	195	400	0.83	0.24	0.13	0.87	0.76	0.85	0.90
	4	2,700	201	400	0.86	0.24	0.10	0.90	0.76	0.89	0.92
	5	2,833	208	400	0.85	0.27	0.09	0.91	0.73	0.87	0.91
	6	2,633	210	400	0.84	0.29	0.11	0.89	0.71	0.87	0.90
	7	2,654	214	400	0.83	0.33	0.10	0.90	0.67	0.87	0.89
	8	2,610	216	400	0.84	0.31	0.09	0.91	0.69	0.87	0.91
MN	3	5,028	201	350	0.86	0.18	0.11	0.89	0.82	0.85	0.94
	4	5,106	209	450	0.86	0.16	0.12	0.88	0.84	0.87	0.95
	5	5,183	211	550	0.88	0.19	0.09	0.91	0.81	0.89	0.95
	6	6,097	216	650	0.87	0.17	0.11	0.89	0.83	0.89	0.94
	7	4,483	221	750	0.87	0.18	0.10	0.90	0.82	0.86	0.94
	8	3,389	225	850	0.85	0.17	0.14	0.86	0.83	0.86	0.93
NV	3	3,000	202	2,432	0.84	0.16	0.16	0.84	0.84	0.82	0.93
	4	2,743	208	2,473	0.85	0.15	0.14	0.86	0.85	0.84	0.93
	5	3,092	212	2,502	0.85	0.16	0.14	0.86	0.84	0.85	0.93
	6	3,064	217	2,531	0.85	0.16	0.15	0.85	0.84	0.82	0.92
	7	2,967	219	2,552	0.85	0.15	0.15	0.85	0.85	0.85	0.93
	8	2,625	223	2,567	0.84	0.15	0.17	0.83	0.85	0.83	0.92
NE	3	15,096	200	2,477	0.85	0.19	0.12	0.88	0.81	0.86	0.93
	4	15,228	206	2,500	0.86	0.21	0.10	0.90	0.79	0.86	0.93
	5	15,137	215	2,531	0.84	0.18	0.13	0.87	0.82	0.82	0.93
	6	14,167	219	2,543	0.85	0.17	0.14	0.86	0.83	0.83	0.93
	7	14,771	222	2,556	0.84	0.15	0.16	0.84	0.85	0.84	0.93
	8	14,223	224	2,561	0.85	0.17	0.14	0.86	0.83	0.84	0.93
AK	3	8,361	201	1,582	0.93	0.06	0.09	0.91	0.94	0.85	0.98
	4	8,275	207	1,589	0.92	0.08	0.09	0.91	0.92	0.85	0.98
	5	8,363	213	1,596	0.93	0.07	0.06	0.94	0.93	0.88	0.98
	6	8,131	218	1,605	0.94	0.05	0.08	0.92	0.95	0.92	0.99
	7	7,977	222	1,610	0.93	0.04	0.12	0.88	0.96	0.90	0.98
	8	7,931	225	1,615	0.93	0.05	0.10	0.90	0.95	0.88	0.98
	9	7,091	226	1,619	0.94	0.05	0.10	0.90	0.95	0.90	0.98

PA	3	2,982	194	1,000	0.86	0.22	0.09	0.91	0.78	0.87	0.94
August	4	3,262	201	1,000	0.86	0.21	0.10	0.90	0.79	0.88	0.94
	5	3,300	208	1,000	0.85	0.22	0.09	0.91	0.78	0.85	0.94
	6	2,913	212	1,000	0.84	0.24	0.11	0.89	0.76	0.87	0.91
	7	2,712	217	1,000	0.83	0.24	0.11	0.89	0.76	0.85	0.91
	8	2,618	221	1,000	0.83	0.23	0.13	0.87	0.77	0.84	0.91
MI	3	7,503	203	1,300	0.84	0.12	0.19	0.81	0.88	0.84	0.93
July	4	7,636	209	1,400	0.85	0.13	0.16	0.84	0.87	0.84	0.93
	5	7,652	214	1,500	0.85	0.15	0.16	0.84	0.85	0.83	0.93
	6	8,030	220	1,600	0.85	0.12	0.18	0.82	0.88	0.83	0.93
	7	6,860	223	1,700	0.85	0.12	0.19	0.81	0.88	0.84	0.93
	8	5,733	224	390	0.77	0.07	0.33	0.67	0.93	0.94	0.90
OH	3	12,055	196	700	0.82	0.23	0.14	0.86	0.77	0.84	0.89
July	4	12,378	203	700	0.84	0.20	0.13	0.87	0.80	0.88	0.91
	5	11,828	206	700	0.84	0.23	0.12	0.88	0.77	0.87	0.90
	6	11,696	214	700	0.82	0.20	0.16	0.84	0.80	0.84	0.90
	7	10,968	215	700	0.83	0.22	0.13	0.87	0.78	0.86	0.90
	8	11,062	221	700	0.81	0.20	0.17	0.83	0.80	0.82	0.89
FL	3	5,685	201	201	0.84	0.19	0.13	0.87	0.81	0.82	0.84
July	4	5,284	210	213	0.84	0.19	0.14	0.86	0.81	0.84	0.84
	5	5,374	216	222	0.84	0.17	0.15	0.85	0.83	0.83	0.84
	6	6,231	217	225	0.85	0.16	0.13	0.87	0.84	0.85	0.86
	7	5,691	221	232	0.84	0.15	0.15	0.85	0.84	0.84	0.85
	8	5,470	225	238	0.85	0.15	0.16	0.85	0.85	0.83	0.85
CA	3	7,350	199	2,432	0.85	0.15	0.14	0.86	0.85	0.84	0.93
August	4	7,025	206	2,473	0.85	0.15	0.14	0.86	0.85	0.84	0.93
	5	6,888	211	2,502	0.86	0.14	0.13	0.87	0.85	0.86	0.93
	6	5,774	216	2,531	0.85	0.15	0.15	0.85	0.85	0.85	0.93
	7	5,628	221	2,561	0.85	0.14	0.16	0.84	0.86	0.83	0.93
	8	5,002	222	2,567	0.86	0.13	0.14	0.86	0.87	0.84	0.93
	11	1,324	225	2,583	0.84	0.18	0.14	0.86	0.82	0.87	0.92
OR	3	1,964	202	2,432	0.85	0.16	0.13	0.87	0.84	0.83	0.94
August	4	2,003	209	2,473	0.83	0.17	0.15	0.85	0.82	0.82	0.92
	5	1,817	213	2,502	0.85	0.17	0.13	0.87	0.83	0.86	0.94
	6	1,322	218	2,531	0.83	0.15	0.15	0.85	0.83	0.83	0.92
	7	1,253	220	2,552	0.85	0.14	0.15	0.85	0.85	0.84	0.92
	8	1,057	224	2,567	0.85	0.16	0.14	0.86	0.84	0.86	0.93
IA	3	1,273	195	398	0.86	0.26	0.09	0.91	0.74	0.90	0.92
July	4	1,449	201	414	0.86	0.25	0.10	0.90	0.75	0.91	0.92
	5	2,494	208	437	0.85	0.24	0.10	0.90	0.76	0.88	0.92
	6	2,620	211	456	0.85	0.29	0.08	0.92	0.71	0.87	0.93
	7	2,698	214	475	0.87	0.27	0.07	0.93	0.73	0.88	0.94
	8	2,853	217	494	0.85	0.29	0.09	0.91	0.71	0.88	0.92
IL	3	34,780	205	750	0.81	0.17	0.23	0.77	0.83	0.72	0.89
August	4	35,465	214	750	0.81	0.17	0.23	0.77	0.83	0.73	0.89
	5	36,243	219	750	0.82	0.16	0.22	0.78	0.84	0.75	0.90
	6	36,659	225	750	0.81	0.16	0.22	0.78	0.84	0.74	0.89
	7	34,537	227	750	0.80	0.17	0.23	0.77	0.82	0.76	0.88
	8	33,549	231	750	0.79	0.17	0.26	0.74	0.83	0.74	0.87
IN	3	40,699	203	5,460	0.83	0.17	0.16	0.84	0.83	0.81	0.92
August	4	41,109	210	5,493	0.83	0.17	0.17	0.83	0.83	0.80	0.92
	5	41,928	214	5,524	0.82	0.19	0.15	0.85	0.81	0.79	0.91
	6	41,224	219	5,544	0.83	0.16	0.18	0.82	0.84	0.81	0.92
	7	40,299	221	5,568	0.82	0.20	0.16	0.84	0.80	0.80	0.91
	8	38,868	224	5,577	0.82	0.19	0.17	0.83	0.81	0.81	0.91
TN	3	14,072	206	359	0.83	0.15	0.22	0.78	0.85	0.74	0.90
August	4	13,926	212	371	0.82	0.16	0.22	0.78	0.84	0.72	0.89
	5	11,372	219	333	0.82	0.16	0.20	0.80	0.84	0.68	0.90
	6	9,459	221	320	0.81	0.18	0.18	0.82	0.82	0.66	0.89
	7	9,364	225	341	0.84	0.15	0.17	0.81	0.84	0.74	0.90
	8	9,429	229	346	0.82	0.18	0.19	0.81	0.82	0.67	0.89

SC	3	14,157	199	452	0.86	0.15	0.12	0.88	0.85	0.85	0.94
August	4	12,310	206	509	0.86	0.16	0.11	0.89	0.84	0.85	0.94
	5	12,372	214	558	0.87	0.12	0.15	0.85	0.88	0.87	0.94
	6	12,451	217	576	0.86	0.13	0.15	0.85	0.87	0.84	0.94
	7	12,793	221	626	0.86	0.12	0.16	0.84	0.88	0.84	0.94
	8	12,881	224	643	0.85	0.12	0.18	0.82	0.88	0.85	0.93
WA	3	1,759	199	2,432	0.87	0.16	0.11	0.89	0.84	0.88	0.94
August	4	1,547	207	2,473	0.85	0.17	0.14	0.86	0.83	0.87	0.93
	5	2,231	210	2,502	0.84	0.16	0.16	0.81	0.87	0.87	0.92
	6	2,076	216	2,531	0.84	0.17	0.15	0.82	0.85	0.86	0.92
	7	1,999	219	2,561	0.84	0.20	0.13	0.87	0.82	0.84	0.91
	8	1,840	223	2,567	0.84	0.21	0.13	0.84	0.79	0.86	0.92
NJ	3	3,812	201	750	0.82	0.17	0.19	0.81	0.83	0.78	0.91
August	4	3,988	207	750	0.83	0.17	0.17	0.83	0.82	0.81	
	5	3,851	211	750	0.82	0.16	0.18	0.82	0.82	0.80	0.91
	6	3,890	216	750	0.82	0.13	0.20	0.80	0.86	0.82	0.92
	7	4,620	217	750	0.80	0.21	0.16	0.84	0.78	0.80	0.90
	8	4,889	221	750	0.80	0.24	0.16	0.82	0.76	0.80	0.89
KY	3	25,850	200	513	0.82	0.18	0.19	0.81	0.82	0.76	0.79
August	4	23,785	203	512	0.82	0.18	0.17	0.82	0.82	0.79	0.80
	5	25,365	211	510	0.83	0.14	0.21	0.79	0.86	0.80	0.83
	6	26,366	218	513	0.83	0.17	0.17	0.83	0.83	0.80	0.81
	7	26,627	221	515	0.81	0.16	0.21	0.79	0.84	0.80	0.80
	8	5,817	227	513	0.81	0.16	0.21	0.79	0.84	0.80	0.80
KS	3	3,324	203	300	0.86	0.15	0.13	0.87	0.85	0.80	0.94
August	4	3,357	208	300	0.85	0.17	0.13	0.87	0.83	0.83	0.93
	5	3,448	216	300	0.86	0.12	0.17	0.83	0.88	0.84	0.93
	6	3,522	222	300	0.84	0.13	0.23	0.77	0.90	0.79	0.92
	7	3,473	227	300	0.84	0.13	0.23	0.77	0.90	0.72	0.92
	8	3,211	233	300	0.87	0.13	0.23	0.77	0.90	0.72	0.93
SD	3	2,913	200	2,432	0.83	0.19	0.14	0.86	0.81	0.80	0.92
August	4	2,923	207	2,473	0.83	0.19	0.15	0.85	0.81	0.81	0.92
	5	2,868	211	2,502	0.84	0.20	0.13	0.87	0.80	0.83	0.93
	6	2,801	217	2,531	0.86	0.15	0.13	0.87	0.85	0.85	0.94
	7	2,721	219	2,552	0.84	0.19	0.14	0.86	0.81	0.84	0.92
	8	2,506	223	2,567	0.83	0.20	0.14	0.86	0.80	0.82	0.91
CO	3	3,518	204	750	0.84	0.16	0.17	0.83	0.84	0.78	0.92
August	4	4,671	210	750	0.85	0.15	0.16	0.84	0.85	0.83	0.93
	5	4,427	215	750	0.82	0.17	0.19	0.81	0.83	0.81	0.90
	6	4,436	220	750	0.84	0.15	0.18	0.82	0.86	0.81	0.92
	7	4,144	222	750	0.83	0.18	0.18	0.82	0.82	0.80	0.91
	8	3,152	226	750	0.82	0.18	0.18	0.82	0.82	0.78	0.90
AZ	3	2,726	201	2,509	0.85	0.14	0.15	0.85	0.86	0.83	0.93
May	4	2,687	206	2,523	0.85	0.13	0.16	0.84	0.87	0.87	0.93
	5	2,772	211	2,543	0.87	0.17	0.10	0.90	0.83	0.85	0.94
	6	2,736	219	2,553	0.86	0.12	0.17	0.83	0.88	0.83	0.93
	7	2,365	223	2,561	0.85	0.13	0.19	0.81	0.87	0.82	0.93
	8	2,078	227	2,572	0.86	0.11	0.19	0.81	0.89	0.82	0.93
WI	3	5,992	204	570	0.84	0.15	0.16	0.84	0.85	0.78	0.92
May	4	6,316	210	592	0.86	0.14	0.14	0.86	0.86	0.83	0.94
	5	6,486	217	610	0.86	0.12	0.17	0.83	0.88	0.82	0.94
	6	6,779	221	622	0.85	0.13	0.19	0.81	0.87	0.81	0.93
	7	6,695	224	638	0.84	0.14	0.19	0.81	0.86	0.83	0.92
	8	6,084	229	652	0.84	0.14	0.20	0.80	0.86	0.77	0.92
AR	3	4,082	204	415	0.84	0.11	0.26	0.74	0.89	0.81	0.92
October	4	3,985	209	417	0.84	0.12	0.21	0.79	0.88	0.83	0.93
	5	4,074	217	420	0.82	0.13	0.25	0.75	0.87	0.78	0.90
	6	3,485	220	421	0.81	0.14	0.24	0.76	0.86	0.82	0.90
	7	3,472	225	423	0.81	0.14	0.26	0.74	0.86	0.80	0.91
	8	2,257	226	424	0.80	0.13	0.28	0.72	0.87	0.85	0.89
	9	2,287	229	425	0.83	0.13	0.24	0.76	0.87	0.78	0.91

	10	1,998	234	428	0.82	0.12	0.29	0.71	0.88	0.76	0.91
MO May	3	2,692	201	364	0.84	0.17	0.15	0.85	0.83	0.82	0.93
	4	2,655	207	388	0.83	0.20	0.14	0.86	0.80	0.81	0.91
	5	2,462	215	403	0.83	0.15	0.19	0.81	0.85	0.83	0.92
	6	2,539	218	413	0.83	0.16	0.17	0.83	0.84	0.83	0.92
	7	2,273	223	435	0.83	0.13	0.21	0.79	0.87	0.82	0.92
	8	1,765	224	443	0.82	0.18	0.17	0.83	0.82	0.82	0.91
ND October	3	1,029	203	585	0.79	0.20	0.22	0.78	0.80	0.78	0.88
	4	1,058	211	600	0.81	0.17	0.20	0.80	0.83	0.79	0.90
	5	1,121	216	622	0.82	0.16	0.20	0.80	0.84	0.81	0.90
	6	1,070	220	638	0.81	0.20	0.18	0.82	0.80	0.80	0.90
	7	1,043	224	641	0.80	0.17	0.23	0.77	0.83	0.79	0.90
	8	1,001	226	650	0.82	0.17	0.19	0.81	0.83	0.84	0.90
MS October	3	1,402	203	365	0.83	0.13	0.21	0.79	0.87	0.84	0.91
	4	1,314	210	465	0.82	0.15	0.22	0.78	0.85	0.81	0.91
	5	1,408	218	565	0.84	0.13	0.22	0.78	0.87	0.78	0.92
	6	1,265	221	665	0.85	0.12	0.21	0.79	0.87	0.79	0.92
	7	1,244	225	765	0.84	0.11	0.25	0.75	0.89	0.79	0.92
	8	1,242	228	865	0.85	0.11	0.21	0.79	0.89	0.80	0.93
NC October	3	10,979	204	540	0.84	0.08	0.25	0.75	0.92	0.88	0.93
	4	13,132	209	544	0.84	0.14	0.17	0.83	0.86	0.83	0.92
	5	13,193	216	550	0.84	0.13	0.19	0.81	0.87	0.82	0.92
	6	12,146	219	552	0.84	0.14	0.19	0.81	0.86	0.83	0.92
	7	12,108	221	554	0.83	0.17	0.18	0.82	0.83	0.81	0.91
	8	11,581	224	557	0.83	0.16	0.19	0.81	0.84	0.82	0.91
OK October	3	4,064	206	300	0.82	0.15	0.24	0.76	0.85	0.71	0.89
	4	3,757	212	300	0.83	0.16	0.19	0.81	0.84	0.74	0.91
	5	3,577	216	300	0.83	0.18	0.16	0.84	0.82	0.73	0.91
	6	3,290	221	300	0.83	0.14	0.22	0.78	0.86	0.77	0.91
	7	2,694	227	300	0.83	0.15	0.25	0.75	0.85	0.66	0.90
	8	3,009	228	300	0.83	0.16	0.18	0.82	0.84	0.71	0.91

Table 5: Figure 8 (Lexile Cut Score Rankings by Grade for Neighboring States) and 9 (Lexile Cut Score Rankings by Grade) Data, State Assessments of each state included in the NWEA Crosswalk Studies (2025).

State	Year
Direct Lexile Linkage using MetaMetrics published reports for each state	
Texas STAAR Lexile Technical Report	2015–2017
National Norms Lexile Grade Level Charts	2010–2019
NWEA Crosswalk (State Assessment → NWEA MAP → Lexile linkage studies)	
Texas STAAR	2025
Massachusetts MCAS	2025
New York NYSTP	2025
Georgia Milestones	2025
Virginia SOL	2025
Minnesota MCA-III	2025
Nevada NV SBAC	2025
Nebraska NSCAS	2025
Alaska AK STAR	2025
Pennsylvania PSSA	2025
Michigan M-STEP	2025
Ohio OST	2025
Florida FAST ELA	2025
California CA SBAC	2025
Oregon OR SBAC	2025
Iowa ISASP	2025
Illinois IAR	2025
Indiana ILEARN	2025
Tennessee TNReady	2025
South Carolina SC READY	2025
Washington WA SBAC	2025
New Jersey NJSLA	2025
New Mexico NM-MSSA	2025
Kentucky KSA	2025
Kansas KAP	2025
South Dakota SD SBAC	2025
Colorado CMAS	2025
Arizona AASA	2025
Wisconsin WI Forward Exam	2025
Arkansas ACT Aspire	2025
Missouri MAP	2025
North Dakota NDSA	2025
Mississippi MAAP	2025
North Carolina NC EOG	2025
Oklahoma OSTP	2025

C: Assessment Data Processing Summary

This appendix details the collection and preparation of student reading assessment data from 29 New Mexico districts, encompassing multiple instruments—NM-MSSA, iMSSA, NWEA MAP, i-Ready, and Renaissance STAR Reading—selected for their inclusion of Lexile measures. Assessments without Lexile linkage, such as ISIP Early Ready, were excluded. To produce a unified, analyzable dataset, records were standardized across differing field names, reconciled across multiple submissions per student, and subjected to quality-control procedures including outlier removal and anchoring to a single score per student per year. The tables that follow document district participation, original field structures, processing outcomes, and the resulting distributions, ensuring that the dataset captures the full diversity of assessment systems while providing a reliable foundation for examining statewide reading growth and proficiency trends.

1. Districts & Assessment Types Included in Data Extraction

Because districts administer different vendor-provided assessments, the specific reading instruments represented in the dataset vary accordingly. Table 6 lists each district alongside the assessment programs from which its data submissions were drawn. This documentation ensures that the dataset captures the diversity of assessment systems currently in use across New Mexico's districts.

Table 6: Participating Districts and Assessment Types

District	Assessment Types
NM_ARTESIA	iMSSA, NM-MSSA
NM_AZTEC	iMSSA, NM-MSSA, RENAISSANCE
NM_BELEN	iMSSA, NM-MSSA
NM_CAPITAN	NM-MSSA
NM_CLOUDCROFT	iMSSA, NM-MSSA
NM_CLOVIS	iMSSA, NM-MSSA
NM_COBRE	iMSSA, NM-MSSA, RENAISSANCE
NM_CUBA	i-Ready, iMSSA, NM-MSSA
NM_DEMING	i-Ready, NM-MSSA
NM_DEXTER	i-Ready, iMSSA, NM-MSSA
NM_ELIDA	iMSSA, NM-MSSA
NM_ESPANOLA	iMSSA, NM-MSSA, NWEA
NM_ESTANCIA	iMSSA, NM-MSSA, NWEA
NM_EUNICE	iMSSA, NM-MSSA
NM_FARMINGTON	iMSSA, NM-MSSA
NM_GADSDEN	iMSSA, NM-MSSA
NM_HAGERMAN	iMSSA, NM-MSSA
NM_HOBBS	iMSSA, iStation, NM-MSSA
NM_LAS CRUCES	i-Ready, iMSSA, NM-MSSA
NM_LOVING	NM-MSSA, RENAISSANCE
NM_LOVINGTON	i-Ready
NM_POJOAQUE	iMSSA, NM-MSSA, NWEA
NM_QUEMADO	RENAISSANCE
NM_RATON	i-Ready, iMSSA, NM-MSSA
NM_RR (Rio Rancho)	NM-MSSA, NWEA
NM_SANTA-FE	i-Ready, NM-MSSA
NM_SANTA-ROSA	iMSSA, NM-MSSA
NM_SOCORRO	iMSSA, NM-MSSA, NWEA
NM_TEXICO	iMSSA, NM-MSSA, RENAISSANCE

2. File Processing Results

Prior to analysis, all submitted files were standardized into a consistent structure to ensure comparability across districts and assessment vendors. Because each vendor employs distinct field names for critical data elements—Student ID, grade level, test date, and Lexile score—these fields were first mapped to a unified schema, as documented in Table 7. Following this alignment, each file was scrutinized to confirm the presence of all four essential fields. Files lacking any required element were excluded from processing, except in instances where the test date could be reliably inferred from the academic term, in which case a midpoint date was assigned. The summary below details the total files received, those successfully processed, and the number omitted.

- **Total files retrieved:** 2,019

Note: Each district-assessment combination includes multiple files because portals export data at school, grade, and term levels.

- **Successfully processed:** 1,917

- **Skipped:** 102 (Missing required fields: Student ID, Grade, Test Date, or Lexile)

Table 7: Column Names Across Assessment Types

Assessment Type	Student ID Column	Grade Column	Test Date Column	Lexile Column
iMSSA	State Student ID	Student Grade	Day Reading Completed	Lexile Score
NM-MSSA	State Student ID	Student Grade	Day Language Arts Completed	Lexile
i-Ready	Student State ID	Student Grade	Completion Date	Lexile Measure
RENAISSANCE	Student State ID	Current Grade	Activity Completed Date	Lexile Score
NWEA (Grade Breakdown)	State StudentID	Grade	Term Tested	LexileScore
NWEA (Combined)	StudentID	Grade	TestStartDate	LexileScore

3. Dataset Size Before and After Outlier Removal

Following the consolidation of all processed files, a comprehensive raw dataset encompassing every Lexile observation submitted by the participating districts was assembled. A limited number of extreme values were detected using a conventional outlier-removal criterion ($3 \times$ the interquartile range) and subsequently excluded to avoid skewing statewide distribution metrics. The summary below presents the dataset's size both prior to and following this filtering procedure.

- **Raw Lexile rows:** 742,153 (*Uniqueness defined by Student ID, Test Date, and Lexile Score*)
- **Lexile rows after $3 \times$ IQR outlier filter:** 741,957
- **Rows dropped:** 196
- **Unique students in dataset:** 111,891

4. Final Distributions After Anchoring by Grade and Assessment Type

Because some students take multiple reading assessments in a given school year, the raw dataset contains more than one Lexile score per student-year. For visualizations and statewide summaries (except for those that isolated a specific assessment, such as Figure 3), we anchored the dataset by retaining only the maximum Lexile score per student per year. This approach reduces noise from repeated testing and ensures each student contributes a single representative performance value annually. Tables 8 and 9 show how anchoring reduces the total number of observations and provide the resulting distributions by grade level and by assessment type. For each student-year, only the maximum Lexile score was retained, and the final anchored dataset included 280,505 Lexile scores.

Table 8: Distribution of Unique Student-Lexile Scores by Grade

Grade	Pre-Anchoring	Post-Anchoring
0	7,229	4,422
1	10,582	4,960
2	12,326	5,166
3	104,461	37,788
4	106,203	38,539
5	110,583	39,840
6	111,939	40,188
7	111,567	41,363
8	114,051	42,501
9	15,977	7,675
10	14,023	6,660
11	12,336	5,975
12	10,680	5,428
TOTAL	741,957	280,505

Table 9: Distribution of Unique Student-Lexile Scores by Assessment

Assessment Type	Pre-Anchoring	Post-Anchoring
iMSSA	319,331	104,042
NM-MSSA	145,795	91,149
i-Ready	144,034	52,998
RENAISSANCE	13,908	3,799
NWEA	118,889	28,517
TOTAL	741,957	280,505

5. Underlying Data Tables for Figures

The Tables reproduced below display the underlying multi-district and national-norms data that inform the majority of figures presented in this report, ensuring full transparency and facilitating direct examination of the precise values depicted in each visualization. Specifically, Table 10 corresponds to Figure 3, Table 11 to Figure 5, Table 12 to Figure 6, Table 13 to Figure 7, and Table 14 to Figure 10.

Table 10: Figure 3 (NM-MSSA Lexile Score Distributions) Data

AY	Median	Mean
22-23	915	899
23-24	915	904
24-25	925	917

Table 11: Figure 5: Lookback Lexile Growth for New Mexico Grades (2-, 4-, and 8-Year Intervals)

Interval	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
2-Year Growth						
National	480	425	305	180	145	125
New Mexico	795	420	225	215	180	125
4-Year Growth						
National	—	—	785	605	450	305
New Mexico	—	—	1020	635	405	340
8-Year Growth						
National	—	—	—	—	—	1315
New Mexico	—	—	—	—	—	1530

Table 12: Figure 6 (Median Lexile Over Time (Grades 3-8)) Data

Academic Year (AY)	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
2020–2021	725	815	920	975	1020	1120
2021–2022	695	825	920	975	1020	1120
2022–2023	675	810	880	1010	1070	1150
2023–2024	660	790	885	1030	1085	1140
2024–2025	685	815	915	1040	1090	1175

Table 13: Figure 7 (Lexile Growth Trajectories for New Mexico Cohorts (AY 24-25)) Data

Cohort	AY	New Mexico	National
3	AY 21-22	-370	-250
3	AY 22-23	5	85
3	AY 23-24	375	355
3	AY 24-25	685	590
4	AY 20-21	-370	-250
4	AY 21-22	40	85
4	AY 22-23	360	355
4	AY 23-24	660	590
4	AY 24-25	815	790
5	AY 19-20	-320	-250
5	AY 20-21	-160	85
5	AY 21-22	400	355
5	AY 22-23	685	590
5	AY 23-24	805	790
5	AY 24-25	915	925
6	AY 18-19	-130	-250
6	AY 19-20	-95	85
6	AY 20-21	515	355
6	AY 21-22	695	590
6	AY 22-23	810	790
6	AY 23-24	885	925
6	AY 24-25	1040	1010
7	AY 17-18	-400	-250
7	AY 18-19	20	85
7	AY 19-20	285	355
7	AY 20-21	725	590
7	AY 21-22	825	790
7	AY 22-23	880	925
7	AY 23-24	1030	1010
7	AY 24-25	1090	1080
8	AY 16-17	-400	-250
8	AY 17-18	135	85
8	AY 18-19	380	355
8	AY 19-20	652	590
8	AY 20-21	815	790
8	AY 21-22	920	925
8	AY 22-23	1010	1010
8	AY 23-24	1085	1080
8	AY 24-25	1175	1140

Table 14: Figure 10 (Lower the Bar, Raise the Numbers: Proficiency Rates by Cut Score) — New Mexico Compared with Texas, Oklahoma, Colorado, and Arizona.

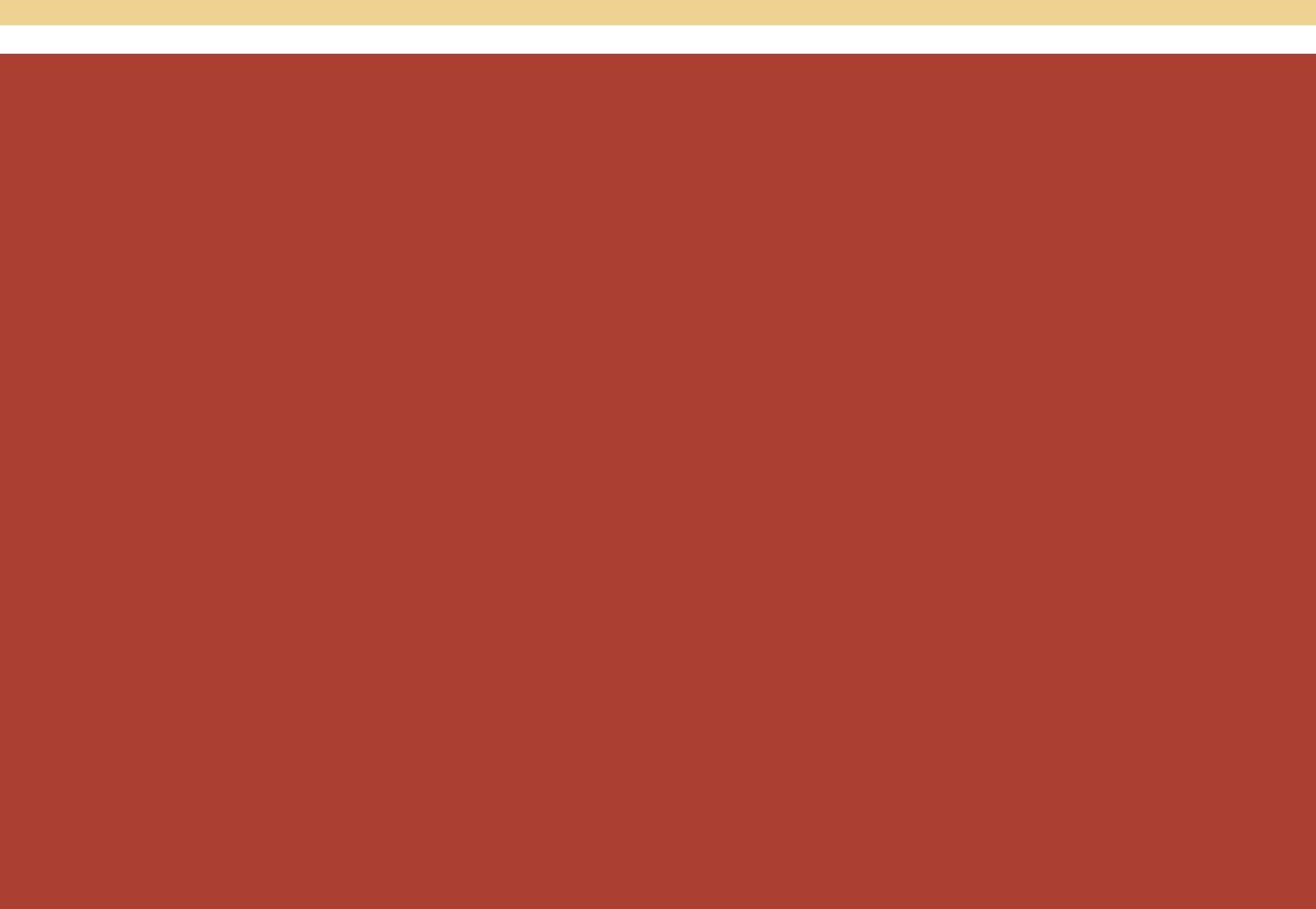
Grade	NM		Texas		Oklahoma		Colorado		Arizona	
	Unscaled	Scaled	Rate	Delta	Rate	Delta	Rate	Delta	Rate	Delta
3	41%	55%	49%	14	24%	-18	42%	-14	36%	0
4	48%	41%	52%	-7	22%	-24	42%	-16	46%	2
5	42%	42%	57%	0	21%	-18	48%	-14	38%	0
6	46%	64%	54%	18	22%	-8	44%	-3	41%	0
7	45%	65%	52%	20	17%	-20	49%	0	42%	-5
8	48%	76%	56%	28	16%	-9	44%	-1	40%	-6

References

- [1] Renaissance. (2024, December 13). *Star Assessment Reports*.
- [2] Renaissance Learning. (n.d.). *Lexile Scores in FastBridge*.
- [3] NWEA. (2025, August 21). *MAP Growth*.
- [4] NWEA Psychometrics and Analytics. (2025, August). *Default Cut Scores for MAP Growth Mathematics and Reading Assessments*.
- [5] North West Evaluation Association (NWEA). (n.d.). *MAP Growth Reading Score to Lexile® RIT Score Conversion Chart*.
- [6] I-Ready. (n.d.). *Family Center – Home*. <https://i-readycentral.com/familycenter/>
- [7] U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics. (2025). *NAEP Data Explorer*.
- [8] National Center for Education Statistics. (2025). *The Nation's Report Card*. U.S. Department of Education.
- [9] New Mexico Taxation and Revenue Department. (2010, January). *2010 NM School District Boundaries*. Information Technology Division.
- [10] New Mexico Legislature. (n.d.). *Engaging Schools, Higher Attendance (ALESC handout)*.
- [11] New Mexico Rural Education Cooperative Association. (2025). *RECA Districts Distribution Map*.
- [12] New Mexico Regional Education Cooperatives Association. (2025). *Member RECs*.
- [13] MetaMetrics, Inc. (n.d.). *Lexile Grade Level Charts*.
- [14] New Mexico Public Education Department. (2023, July). *NM-MSSA and iMSSA Scale Scores (Revised)*.
- [15] Cognia. (2025). *Interpretation Guide for Computer-Based and Paper-Based Tests, Spring 2025, NM-MSSA Grades 3–8*. Developed under contract with the New Mexico Public Education Department.
- [16] New Mexico Public Education Department (NM PED). (2025, Spring). *Spring 2025 Assessment Briefing: English Language Arts (ELA) Proficiency*.
- [17] New Mexico Public Education Department. (2025). *New Mexico – 2025 Accountability Data*.
- [18] New Mexico Public Education Department. (n.d.). *Martinez & Yazzie Consolidated Lawsuit: Updates*.
- [19] National Center for Education Statistics. (n.d.). *Digest State Dashboard: New Mexico*. U.S. Department of Education.
- [20] Yepa, J., Fairbanks, C., & Chosa, C. (2018). *Victory for New Mexico Schools: Court Rules in Yazzie/Martinez Case that Every Child Has a Right to a Sufficient Public Education under New Mexico's Constitution*. Native American Budget & Policy Institute.
- [21] New Mexico Center on Law & Poverty. (n.d.). *Yazzie-Martinez Legal Documents – Court Case*.

- [22] New Mexico Education. (n.d.). *Pursuit of Educational Equity: The Yazzie-Martinez Impact*.
- [23] Chingos, M. (2024, December). *States' Demographically Adjusted Performance on the 2022 Nation's Report Card*. Washington, DC: The Urban Institute.
- [24] NWEA. (2019). *MAP Growth RIT to Lexile [Conversion table]*.
- [25] Amira Learning. (n.d.). *Istation to Amira Transition Information*. Retrieved from <https://amiralearning.com/istation-to-amira>
- [26] Fahle, E. (2023, May). *Explaining COVID Losses: School District and Community Factors Associated with Learning Losses During the Pandemic*. Education Recovery Scorecard (Harvard CEPR & Stanford SEDA).
- [27] Texas Education Agency. (2025, Spring). *Spring 2025 STAAR® Results for Grades 3–8*.
- [28] MetaMetrics (for the Texas Education Agency). (2018, February). *Texas STAAR Reading, English I, and English II—Lexile Linking Report*.
- [29] Texas Education Agency. (2019, February 22). *Clarification Regarding STAAR & Lexile*.
- [30] Oklahoma State Department of Education. (2025, Spring). *OSTP Assessment Resources and Score Reports*.
- [31] Colorado Department of Education. (2025, Spring). *CMAS Assessment Data and Results*.
- [32] Arizona Department of Education. (2025, Spring). *AASA Assessment Data*.

About the Research Team


Alejandro Mendoza is the engineering lead and co-founder of Evress Analytics. Raised in a multigenerational household, Alejandro has long been motivated to expand access and opportunity. He began his career at Intuit, developing software tools to improve financial accessibility in the wake of the 2008 financial crisis. In the education sector, Alejandro co-founded and led engineering efforts for three platforms supporting student achievement—Tutorfly, GoSchoolBox, and Evress Analytics—applying his expertise to build scalable, data-driven solutions for education.

Samantha R. Lish received her D.Phil in Theoretical Physics from the University of Oxford. Samantha is passionate about STEM education and data visualization, and specializes in building models for real-world applications. She leads the data science team at Evress, producing quantitative insights for education policy and legislative advocacy. Her work transforms complex data-driven patterns into clear, actionable findings.

Sayli Shivalkar earned a Bachelor's degree in Electronics Engineering and a Master's in Data Science from the University of Rochester. A former startup founder in the agritech domain, she is a data scientist who builds end-to-end analytics for education. She delivers complex, decision-ready visual analytics and automates reporting. Her work spans applied research, Dash boarding, and emerging AI.

Elizabeth Wang holds a B.S. in Computer Science and an M.S. in Management Science & Engineering from Stanford University. At Evress, she builds data engineering pipelines and data science workflows that turn large-scale datasets into actionable guidance for schools; previously, she worked in biotech consulting and is motivated by using data to improve outcomes across education, climate, and agtech.

Stephanie Wyka is a nationally recognized leader in school and district transformation and professional learning, with more than 20 years of experience in public education. She has served as a teacher, school administrator, and central office leader, with a deep understanding of classroom instruction, turnaround leadership, data-informed continuous improvement efforts, and systems-level change.

