

Virginia State Corporation Commission
eFiling CASE Document Cover Sheet

Case Number (if already assigned) PUR-2026-00011

Case Name (if known) Application of Virginia Electric and Power Company
For approval of its large-load connection queue
process standards

Document Type APLA

Document Description Summary Application of Virginia Electric and Power Company
For approval of its large-load connection queue
process standards

Total Number of Pages 38

Submission ID 36180

eFiling Date Stamp 2/2/2026 2:33:15PM

WITNESS DIRECT TESTIMONY SUMMARY

Witness: R. Matthew Gardner

Title: Vice President – Electric Transmission Planning

Summary:

Company Witness R. Matthew Gardner discusses the need for a connection queue process specifically designed to manage the significant and continually growing number of requests to connect large load in the Dominion Zone. Mr. Gardner introduces the main features of the large-load connection queue process and discusses how it relates to transmission planning and generator interconnection. Mr. Gardner also addresses the need for the process to remain flexible to account for customer needs and preserve the ability to make improvements over time.

Mr. Gardner explains that the Company developed the current version of the large-load connection queue process because it has seen an unprecedented level of growth in both the size and number of requests for delivery points (“DP Requests”) in the last several years. He explains that previously, the Company was able to manage the fewer number and smaller size of the DP Requests it received without a formal queue. However, the recent significant increase in the volume of DP Requests the Company is receiving, combined with the increased size of many DP Requests that represent large-load customers, highlighted the need for the Company to develop additional structure to its DP Request process to continue to manage the queue efficiently and transparently.

Mr. Gardner explains that the large-load connection queue process provides a structured, transparent framework for managing DP Requests to ensure that large electric loads are analyzed and connected to the Company’s system in a timely and orderly manner while maintaining safe and reliable service for both new and existing customers. He explains that the process is managed through clearly defined stages with specific criteria for Electric Distribution Company (“EDC”) requirements and Company analysis milestones that are confirmed to proceed to the next stage.

Next, Mr. Gardner notes that while the Company today does not propose any specific “fast-track” rules related to its large-load connection queue, or outside of that process, the Company understands the importance of the issue and will continue working closely with stakeholders to develop potential flexibility solutions to help increase the speed to power for the Company’s large-load customers. He explains that the Company’s large-load connection queue process operates in the larger context of transmission planning and generator interconnection as those processes are managed by PJM and notes that ongoing FERC and PJM proceedings and actions may directly influence potential flexibility solutions.

Finally, Mr. Gardner explains that the large-load connection queue process has evolved over time to improve transparency and certainty for EDCs and the Company, and to increase the efficiency of the queue. He explains that the Company is currently utilizing this process to manage large-load DP Requests and will continue to iterate the process as needed to account for changing dynamics on the grid and in the queue.

**DIRECT TESTIMONY
OF
R. MATTHEW GARDNER
ON BEHALF OF
VIRGINIA ELECTRIC AND POWER COMPANY
BEFORE THE
STATE CORPORATION COMMISSION OF VIRGINIA
CASE NO. PUR-2026-00011**

1 **Q.** **Please state your name, position of employment, and business address.**

2 A. My name is R. Matthew Gardner, and I am Vice President – Electric Transmission
3 Planning for Virginia Electric and Power Company (“Dominion Energy Virginia” or the
4 “Company”). My business address is 5000 Dominion Boulevard, Glen Allen, Virginia.
5 A statement of my background and experience is detailed in Appendix A.

6 **Q.** **What are your responsibilities as Vice President – Electric Transmission Planning?**

7 A. I am responsible for leading the Company’s Electric Transmission Planning and
8 Operations Organization. These groups plan the need for new transmission and
9 substation facilities to serve new load and interconnect new generation resources with the
10 Company’s Transmission System, the Real Time Operation of these facilities in
11 conjunction with PJM Interconnection, L.L.C. (“PJM”) Operations, and the operation and
12 maintenance of the Company’s Transmission and Substation Facilities.

13 **Q.** **What is the purpose of your testimony in this proceeding?**

14 A. I am testifying in support of the Company’s application for approval of its large-load
15 connection queue process standards. Specifically, I discuss the need for a connection
16 queue process specifically designed to manage the significant and continually growing
17 number of requests to connect large load in the Dominion (“DOM”) Zone. I introduce
18 the main features of the large-load connection queue process and discuss how it relates to

1 transmission planning and generator interconnection. Finally, I address the need for the
2 process to remain flexible to account for customer needs and preserve the ability to
3 evolve as the Company gains experience with its application over time.

4 **Q. Why has the Company developed the large-load connection queue process?**

5 A. The Company has seen an unprecedented level of growth in both the size and number of
6 requests for delivery points (“DP Requests”) in the last several years. Previously, the
7 Company was able to manage the fewer number and smaller size of the DP Requests it
8 received without a formal queue. However, the recent significant increase in the volume
9 of DP Requests the Company is receiving, combined with the increased size of many DP
10 Requests that represent large-load customers, highlighted the need for the Company to
11 develop additional structure to its DP Request process to continue to manage the queue
12 efficiently and transparently.

13 **Q. You mention the significant growth in the number and size of DP Requests the
14 Company is receiving. What is the current state of the large-load connection queue?**

15 A. Currently, approximately 25,000 megawatts (“MW”) of large-load DP Requests
16 progressing through the queue have already received projected connection dates between
17 now and December 31, 2031. As of December 31, 2025, the Company has assigned
18 batches to an additional approximately 45,000 MW of large-load DP Requests under the
19 large-load connection queue process and is studying those DP Requests to determine their
20 projected connection dates. This total of approximately 70,000 MW of DP Requests
21 traveling through the queue represents almost triple the DOM Zone’s current all-time
22 peak of 24,678 MW on January 23, 2025. And the Company is receiving more DP

- 1 Requests all the time; each month the Company receives approximately 10 new DP
- 2 Requests, typically totaling 2,000-3,000 MW.

3 **Q. How does the large-load connection queue process address this voluminous and**
4 **growing need?**

5 A. The process provides a structured, transparent framework for managing DP Requests to
6 ensure that large electric loads are analyzed and connected to the Company's system in a
7 timely and orderly manner while maintaining safe and reliable service for both new and
8 existing customers. Under this framework, the Company manages DP Requests in a
9 queue organized by batches of approximately ten DP Requests per batch, with each batch
10 typically representing two to three gigawatts of aggregate load. DP Requests are
11 submitted and tracked on the Company's Delivery Point Exchange ("DPE") online
12 platform. The process is managed through clearly defined stages with specific criteria for
13 Electric Distribution Company ("EDC")¹ requirements and Company analysis milestones
14 that are confirmed to proceed from one stage to the next. This process is described in
15 further detail in the testimony of Company Witness Jacqueline R. Vitiello and the Large-
16 Load Connection Queue Process Standards (the "Standards") she sponsors.

17 **Q. What is the applicability of the Standards?**

18 A. The Standards are applicable to DP Requests associated with large loads of
19 approximately 100 MW or more, serving data center customers within the DOM Zone.

¹ As defined in the Standards, an EDC is a utility company, cooperative, or municipality responsible for distributing electricity to retail customers within a specific geographic area. EDCs manage the infrastructure that delivers electricity from the transmission system to homes and businesses. In addition, for the purposes of the Standards, the Customer (as a capitalized defined term) is the EDC.

3 A. Yes. The process and Standards apply to all EDCs seeking to connect with the
4 Company's Electric Transmission system throughout the DOM Zone and is not limited to
5 the Dominion Load Serving Entity ("LSE").

6 **Q. How does the large-load connection queue process relate to other transmission**
7 **planning and generation interconnection efforts?**

8 A. The Company's large-load connection queue process operates in the larger context of
9 transmission planning and generator interconnection as those processes are managed by
10 PJM. These include PJM's Regional Transmission Expansion Plan ("RTEP") process,
11 Reliability Resource Initiative ("RRI") initiative, previous PJM generation
12 interconnection process reform, PJM's Critical Issue Fast Path ("CIFP") stakeholder
13 process, and the Federal Energy Regulatory Commission's ("FERC") recent directive
14 that PJM file procedures addressing interconnection of co-location arrangements.²

15 For example, the Company’s analysis of DP Requests through the batch process to
16 determine targeted energization dates is impacted by the timely identification of needed
17 projects through the RTEP. Further, as identified by the Commission’s reply comments
18 in the FERC Advanced Notice of Proposed Rulemaking (“ANOPR”) proceeding
19 addressing large-load transmission grid interconnections, the pace of load
20 interconnections is negatively impacted by generation interconnection backlogs.³ The

² PJM Interconnection, L.L.C., 193 FERC ¶ 61,217, Docket No. EL25-49-000 (2025).

³ *Interconnection of Large Loads to the Interstate Transmission System*, Reply Comments of the Virginia State Corporation Commission at 6, Docket No. RM26-4-000 (Dec. 5, 2025).

1 Company is actively involved in advocating to PJM for the identification and selection of
2 needed transmission projects in a timely manner and improvements to the generator
3 interconnection process and will continue to participate in such stakeholder efforts in
4 support of our customers, both existing and new.

5 **Q. In its Final Order in the Company's Biennial Review proceeding, the Commission
6 encouraged the Company as part of this filing to “consider options for faster
7 interconnection of large loads that meet certain readiness or other reasonable
8 criteria (e.g., site readiness, proximity to generation, flexibility, etc.).” (Case No.
9 PUR-2025-00058, Final Order at 23 (Nov. 25, 2025)). Has the Company considered
10 these or other options for faster connection of large loads that meet certain criteria?**

11 A. As the Commission heard recently at its Data Center Load Technical Conference (Case
12 No. PUR-2024-00144), the Company is considering potential options for further
13 accelerating connection of large loads. Among other things, the Company highlighted its
14 CAPFLEX pilot program, and engaged with the Commission and the panelists on the
15 numerous ideas, considerations, and concerns related to this important issue. In the
16 thorough discussion, a couple of points appeared clear to the Company. First, the chief
17 concern voiced at the technical conference, including by the Company, the large-load
18 customers, and other stakeholders is ensuring the reliability of the grid, followed closely
19 with continuing to ensure affordability. Second, this issue is highly complex and requires
20 further collaboration before potential solutions are implemented. In addition, as
21 discussed during the technical conference and noted above, there are a number of

1 ongoing proceedings and actions at FERC and PJM that may directly inform potential
2 solutions, or otherwise affect how these issues are addressed.⁴

3 The Company recognizes the need to incorporate flexibility into the large-load
4 connection process. While ensuring safety and reliability are paramount, the technical
5 conference highlighted key points that inform the Company's work and approach.
6 Among these are: 1) ensuring workable, non-discriminatory solutions that support the
7 safe and reliable connection of all customers, both large and small; 2) working toward a
8 multi-faceted approach that provides a menu of products and possible options to achieve
9 flexibility for the various types of large-load customers and factual circumstances; and, 3)
10 evaluating possible locational specific solutions.

11 While the Company today does not propose any specific "fast-track" rules related to its
12 large-load connection queue, or outside of that process, as discussed herein and during
13 the technical conference, the Company understands the importance of the issue and will
14 continue working closely with stakeholders to develop potential flexibility solutions to
15 help increase the speed to power for its large-load customers.

16 **Q. Does the Company consider the large-load connection queue process and standards
17 to be fully developed and set in stone at this stage?**

18 A. No. The process has evolved over time to improve transparency and certainty for EDCs,
19 their customers, and the Company, and to increase the efficiency of the queue as we
20 manage the tremendous number of DP Requests we are receiving from large-load

⁴ See *Interconnection of Large Loads to the Interstate Transmission System*, Notice Inviting Comments, Docket No. RM26-4-000 (Oct. 27, 2025); *PJM Interconnection, L.L.C.*, 193 FERC ¶ 61,217, Docket No. EL25-49-000 (2025).

1 customers. The Company is currently utilizing this process to manage large-load DP
2 Requests and will continue to iterate the process to account for changing dynamics on the
3 grid and in the queue. The manner in which the Company would amend the standards is
4 discussed in Company Witness Vitiello's testimony and in the Standards document.

5 **Q. Does this conclude your pre-filed direct testimony?**

6 A. Yes, it does.

**BACKGROUND AND QUALIFICATIONS
OF
R. MATTHEW GARDNER**

Dr. R. Matthew Gardner (“Matt”) is Vice President-Planning & Operations (Electric Transmission), Dominion Energy Virginia. He is responsible for over 6,700 miles of electric transmission lines and more than 800 substation assets providing service to the Company’s 2.7 million customers. This includes transmission and substation planning, operations and maintenance, and the Electric Transmission System Operations Center.

Since Dr. Gardner joined the Company in 2008, he has held roles in planning, operations, maintenance, and engineering. In 2022, he was named General Manager-Transmission, and was named Vice President-Electric Transmission, Dominion Energy Virginia in February 2023. Dr. Gardner assumed his current post in June 2023.

Prior to joining Dominion Energy, Dr. Gardner worked with the Tennessee Valley Authority, ABB Corporate Research Switzerland, Grenoble Institute of Technology in Grenoble, France, and consulted for the North American Electric Reliability Corporation (NERC) through Lawrence Berkeley National Lab (LBNL).

Dr. Gardner serves on the board of directors for the North American Transmission Forum (NATF), and the executive advisory council of the Institute of Electronic and Electrical Engineers (IEEE) Power and Energy Society (PES). He is active in several industry groups, including Cigré, serving as President of the Cigré United States National Committee, and the Electric Power Research Institute (EPRI). He participates in various academic institutions and consortia, including serving as Executive Engineer in Residence at Virginia Commonwealth University, as well as advisory and advocacy roles at George Mason University, University of Tennessee (Knoxville), Virginia State University, and Virginia Tech.

APPENDIX A

Dr. Gardner received his doctorate in Electrical Engineering from Virginia Tech, where he was a Bradley Fellow. He also holds bachelor's and master's degrees in electrical engineering from Virginia Tech and is a registered Professional Engineer in the Commonwealth of Virginia. In 2025, he was inducted into the Virginia Academy of Science, Engineering and Medicine (VASEM).