Attachement to Councilmember Ed London's Commentary

	FROM	INTENSITY	PERIOD OF RAINFALL RECORD 1990-2022 (32 Years)											
	R. SAMIMY	(in./hr.)	January	February	March	April	May	June	July	August	September	October	November	December
	#	1.0-1.5	12	10	9	22	20	41	33	31	39	31	11	5
	% IN ANY 1 YEA	AR	38%	31%	28%	69%	63%	128%	103%	97%	122%	97%	34%	16%
	#	1.5-1.75	2	1	0	7	7	9	5	12	10	11	5	3
	% OCCURANCE	IN ANY 1 YEAR	6%	3%	0%	22%	22%	28%	16%	38%	31%	34%	16%	9%
	#	1.75-2.0	0	3	2	3	8	6	1	7	3	6	2	3
	% OCCURANCE	IN ANY 1 YEAR	0%	9%	6%	9%	25%	19%	3%	22%	9%	19%	6%	9%
	AVERAGE RAIN INCHES		2.33	2.27	2.47	3.44	4.94	7.76	5.98	7.51	8.45	6.49	3.29	2.25
AV RAIN DAYS (≥ 0.01")		6.7	6	6.9	6	8.9	14.5	12.1	14	14.9	11.2	8.1	6.9	

Source: NOAA (extremes 1927-present)[6]

Table 5

AECOM	TECH MEMO 3/15/2021									
p2	89,768 lin' storm sewer pipes; 1100 drainage structures									
p2	39 gravity wells; 20 outfalls; 20 outfalls; 2 pump stations									
p2	Current discharge capacity to bay =210cfs; gravity wells capacity = 92cfs									
p2	Total existing capacity = 302 cfs; bay 70% and wells 30%									
p4	KB acres =793.66									
p4	Service area = 793.66 - 204.59 Condo Area = 589.07 acres									
p4	10 year 24 hour storm = 8.75" need 1766cfs - 209cfs currently(no wells) =1557cfs deficit									
p4	5 year 24 hour storm= 7.5" need???									
p4	Wells not included because of rising ground water in the future									
р6	Trenching method reccomended for installation									
р6	1 or 2 pumps fit into a man hole size for 1 force main									
р7	Small pump = 42 to 46 cfs with 1000' force main length									
р7	3 small pumps needed for Cape Forida streets									
p8	Shallow wells (80-300') have a design life of 20 years, need rehab every 3 to 4 years									
р9	Conclusion- small and large pumps									
p10	Need to acquire additional easements for pump and transfer stations									

MY ASSUMPTIONS

- 1. RAIN UNIFORM OVER ENTIRE ISLAND
- 2. RAIN PERCOLATES INTO GROUND
- 3. CURRENT SYSYTEM OF 302 CFS IS 100% EFFICIENT
- 4. WORST CONDITION 7.5" IN 3.75 HOURS
- 5. ONLY 3 MONTHS OF YEAR AVERAGE => 7.5" OF RAIN
- 6. EMERGENCY VEHICHES LESS THEN 14" ON STREET
- 7. ASSUME STREET AND SWALE 25% OF AREA
- 8. ALL AREA FLAT, IN REALITY PITCHED TO INLETS.