BRIDGE RATING

Prepared For

MASSACHUSETTS DEPARTMENT OF TRANSPORTATION HIGHWAY DIVISION

PITTSFIELD

HOLMES ROAD

OVER

HOUSATONIC RAILROAD

BRIDGE NO. P-10-002 (0DY)

STRUCTURE NO. P10002-0DY-DOT-634

DATE OF INSPECTION: MAY 22, 2018

DATE OF RATING: MARCH 07, 2019

BASIL B. BANTIMBA

3/6/2019

PREPARED BY

AI Engineers, Inc.

60 K St., 3rd Floor Boston, MA 02127

BRIDGE RATING

Prepared For

MASSACHUSETTS DEPARTMENT OF TRANSPORTATION HIGHWAY DIVISION

PITTSFIELD

HOLMES ROAD

OVER

HOUSATONIC RAILROAD

BRIDGE NO. P-10-002 (0DY)

STRUCTURE NO. P10002-0DY-DOT-634

DATE OF INSPECTION: MAY 22, 2018

DATE OF RATING: MARCH 07, 2019

BASIL B.
BANTIMBA
CIVIL
No. 34033
3/6/2019

PREPARED BY

AI Engineers, Inc.

60 K St., 3rd Floor Boston, MA 02127

INDEX

<u>PITTSFIELD</u>	HOLMES ROAD OVER HOUSATONIC RAILROAD	BRIDGE NO. P-10-002
SUMMARY OF BRIDGE	E RATING	1
BREAKDOWN OF BRID	OGE RATING	2-17
LOCATION MAP		18
DESCRIPTION OF BRID	OGE	19
RATING ANALYSIS AS	SSUMPTIONS AND CRITERIA	
EVALUATION OF RAT	ING AND RECOMMENDATIONS	24
AVAILABLE PLANS A	ND INSPECTION REPORTS	25
TRUCK LOADINGS		26-28
APPENDICES		
APPENDIX A – INSI	PECTION REPORTS	
APPENDIX B – PHO	OTOS	
APPENDIX C – COM	MPUTATIONS	
APPENDIX D – COM	MPUTER INPUT AND OUTPUT	
APPENDIX E – PRE	VIOUS RATING REPORT	
APPENDIX F – MISO	CELLANEOUS	

SUMMARY OF BRIDGE RATING

TOWN/CITY:

PITTSFIELD

BRIDGE NO.; P-10-002

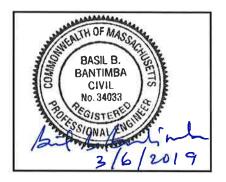
CARRIES:

HOLMES ROAD

OVER:

HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634


BIN NO.:

0DY

RATINGS (TONS)

	LOAD FACTOR RATINGS FOR LOAD POSTING PURPOSES LOAD RATINGS IN ENGLISH TONS									
VEHICLE TYPE	INVENTORY	OPERATING								
H20	0.0	0.0								
TYPE 3	0.0	0.0								
TYPE 3S2	0.0	0.0								
HS20	0.0	0.0								
SU4	0.0	0.0								
SU5	0.0	0.0								
SU6	0.0	0.0								
SU7	0.0	0.0								
EV2	-	0.0								
EV3	<u></u>	0.0								

MS18 LOAD FACTOR RATINGS IN METRIC TONS PROVIDED IN COMPLIANCE WITH THE DECEMBER 1995									
	FHWA NBIS CODING GUIDE								
INVEN	ITORY	OPERATING							
Item 66	MS Equivalent	Item 64 MS Equivale							
0.0 MS0.0 0.0 MS0.0									

A posting recommendation has been made based on the results of this Rating Report. This recommendation is contained in the "Memorandum to the NBIS File" for this bridge, dated _____

Consultant P.E. Stamp

State Bridge Engineer

Date

BREAKDOWN OF BRIDGE RATING

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

DRIDGE COMPONENT			RATING	_	OPERATING RATING BY			
BRIDGE COMPONENT	LOAD FACTOR METHOD (ENGLISH TONS)				LOAD FACTOR METHOD (ENGLISH TONS)			
	H20	TYPE 3	TYPE 3S2	HS20	H20	TYPE 3	TYPE 3S2	HS20
BEAMS B1								
FLEXURAL STRENGTH	35.2	39.4	52.3	41.8	58.7	65.8	87.4	97.5
MOMENT AT MID-SPAN								
BEAMS B1								
SHEAR STRENGTH	47.3	47.6	70.1	56.1	77.3	79.3	115.5	92.1
AT CRITICAL SHEAR LOC.								
BEAMS B1	21.2	25.0	46.0	27.2				
SERVICEABILITY CONC. TENSION AT MID-SPAN	31.3	35.0	46.9	37.2	-	-	-	-
BEAMS B2								
FLEXURAL STRENGTH	36.6	41.0	54.4	43.5	61.1	68.4	90.8	72.6
MOMENT AT MID-SPAN	30.0	41.0	34.4	43.3	01.1	00.4	90.8	72.0
BEAMS B2								
SHEAR STRENGTH	48.3	48.2	69.6	57.1	79.0	80.4	116.2	94.1
AT CRITICAL SHEAR LOC.	10.5	10.2	07.0	07.1	75.0	00.1	110.2	7 1.1
BEAMS B2								
SERVICEABILITY CONC.	33.4	37.4	50.0	39.7	_	_	_	_
TENSION AT MID-SPAN								
BEAMS B3								
FLEXURAL STRENGTH	32.5	36.4	48.3	38.6	54.2	60.8	80.7	64.5
MOMENT AT MID-SPAN								
BEAMS B3								
SHEAR STRENGTH	48.3	48.2	71.6	57.3	79.0	80.4	117.9	94.1
AT CRITICAL SHEAR LOC.								
BEAMS B3	20.2	22.0	42.0	240				
SERVICEABILITY CONC.	29.2	32.8	43.8	34.8	-	-	-	-
TENSION AT MID-SPAN								

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	LOA	D FACT	Y RATING OR MET SH TONS	HOD	OPERATING RATING BY LOAD FACTOR METHOD (ENGLISH TONS)			
	H20	TYPE 3	TYPE 3S2	HS20	H20	TYPE 3	TYPE 3S2	HS20
BEAMS B4 FLEXURAL STRENGTH MOMENT AT MID-SPAN	26.8	30.0	40.0	31.9	44.8	50.2	66.7	53.2
BEAMS B4 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	48.3	48.2	71.6	57.3	79.0	80.4	117.9	94.1
BEAMS B4 SERVICEABILITY CONC. TENSION AT MID-SPAN	23.5	26.3	<mark>35.3</mark>	27.9	1	1	-	-
BEAMS B5 FLEXURAL STRENGTH MOMENT AT MID-SPAN	45.4	50.8	68.2	53.9	75.7	84.9	113.9	90.1
BEAMS B5 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	52.3	50.8	74.9	62.0	85.6	84.6	125.1	101.9
BEAMS B5 SERVICEABILITY CONC. TENSION AT MID-SPAN	44.8	50.2	66.7	53.3	-	-	-	-
BEAMS B6 FLEXURAL STRENGTH MOMENT AT MID-SPAN	40.3	45.2	59.9	48.0	67.4	75.5	100.1	80.1
BEAMS B6 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	48.3	48.2	71.6	57.3	78.9	80.4	117.9	94.1
BEAMS B6 SERVICEABILITY CONC. TENSION AT MID-SPAN	30.0	33.6	45.0	35.7	-	-	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

LOA	D FACT	OR MET	HOD	OPERATING RATING BY LOAD FACTOR METHOD (ENGLISH TONS)			HOD
			/				/
1120	TILES	11111 332	11320	1120	111123	111E 332	11320
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48.3	48.2	71.6	57.3	79.0	80.4	117.9	94.1
0.0	0.0	0.0	0.0	-	-	-	-
45.4	50.8	67.3	53.9	75.7	84.9	112.3	90.1
52.3	50.8	74.9	62.0	85.6	84.6	125.1	101.9
45.3	50.6	66.7	53.5	-	-	-	-
23.7	26.5	35.3°	28.1	39.5	44.3	59.0	47.0
40.2	40.2	71.6	57.2	70.0	00.4	117.0	04.1
48.3	48.2	/1.6	37.3	/9.0	80.4	117.9	94.1
20.2	22.6	30.4	24.0				_
20.2	<u>~~.0</u>	50.4	∠4.0	_	_	-	-
	LOA (H20 0.0 48.3 0.0	LOAD FACT (ENGLIS) H20 TYPE 3 0.0 0.0 48.3 48.2 0.0 0.0 45.4 50.8 52.3 50.8 45.3 50.6 23.7 26.5 48.3 48.2	LOAD FACTOR MET (ENGLISH TONS) H20 TYPE 3 TYPE 3S2 0.0 0.0 0.0 48.3 48.2 71.6 0.0 0.0 0.0 45.4 50.8 67.3 52.3 50.8 74.9 45.3 50.6 66.7 23.7 26.5 35.3 48.3 48.2 71.6	0.0 0.0 0.0 0.0 48.3 48.2 71.6 57.3 0.0 0.0 0.0 0.0 45.4 50.8 67.3 53.9 52.3 50.8 74.9 62.0 45.3 50.6 66.7 53.5 23.7 26.5 35.3 28.1 48.3 48.2 71.6 57.3	LOAD FACTOR METHOD (ENGLISH TONS) LOA (ENGLISH TONS) H20 TYPE 3 TYPE 3S2 HS20 H20 0.0 0.0 0.0 0.0 0.0 48.3 48.2 71.6 57.3 79.0 45.4 50.8 67.3 53.9 75.7 52.3 50.8 74.9 62.0 85.6 45.3 50.6 66.7 53.5 - 23.7 26.5 35.3 28.1 39.5 48.3 48.2 71.6 57.3 79.0	LOAD FACTOR METHOD (ENGLISH TONS) LOAD FACT (ENGLISH TONS) H20 TYPE 3 TYPE 3S2 HS20 H20 TYPE 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.3 48.2 71.6 57.3 79.0 80.4 0.0 0.0 0.0 - - - 45.4 50.8 67.3 53.9 75.7 84.9 52.3 50.8 74.9 62.0 85.6 84.6 45.3 50.6 66.7 53.5 - - 23.7 26.5 35.3 28.1 39.5 44.3 48.3 48.2 71.6 57.3 79.0 80.4	LOAD FACTOR METHOD (ENGLISH TONS) LOAD FACTOR METHOD (ENGLISH TONS) H20 TYPE 3 TYPE 382 HS20 H20 TYPE 3 TYPE 382 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.3 48.2 71.6 57.3 79.0 80.4 117.9 0.0 0.0 0.0 - - - 45.4 50.8 67.3 53.9 75.7 84.9 112.3 52.3 50.8 74.9 62.0 85.6 84.6 125.1 45.3 50.6 66.7 53.5 - - - 23.7 26.5 35.3 28.1 39.5 44.3 59.0 48.3 48.2 71.6 57.3 79.0 80.4 117.9

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

	INVENTORY RATING BY				OPERATING RATING BY			
BRIDGE COMPONENT	LOAD FACTOR METHOD				LOAD FACTOR METHOD			
	(ENGLISH TONS)				(ENGLIS	SH TONS)
	H20	TYPE 3	TYPE 3S2	HS20	H20	TYPE 3	TYPE 3S2	HS20
BEAMS B10 FLEXURAL STRENGTH MOMENT AT MID-SPAN	57.7	64.6	85.6	58.6	96.3	107.9	143.0	114.6
BEAMS B10 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	73.6	78.4	108.9	87.0	120.5	131.0	179.0	143.3
BEAMS B10 SERVICEABILITY CONC. TENSION AT MID-SPAN	52.4	58.7	78.2	62.3	1	1	-	

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

	INVI	ENTORY	RATING	G BY	OPERATING RATING BY			
BRIDGE COMPONENT		LOAD FACTOR METHOD			LOAD FACTOR METHOD			
	(ENGLISH TONS)			(ENGLISH TONS)				
	SU4	SU5	SU6	SU7	SU4	SU5	SU6	SU7
BEAMS B1								
FLEXURAL STRENGTH	37.8	39.4	39.5	40.4	63.1	65.7	66.0	67.5
MOMENT AT MID-SPAN								
BEAMS B1								
SHEAR STRENGTH	47.1	47.2	54.6	56.6	78.5	78.5	90.2	93.8
AT CRITICAL SHEAR LOC.								
BEAMS B1								
SERVICEABILITY CONC.	33.6	35.0	35.2	35.9	-	-	-	-
TENSION AT MID-SPAN								
BEAMS B2								
FLEXURAL STRENGTH	39.3	40.9	41.1	42.0	65.6	68.4	68.7	70.2
MOMENT AT MID-SPAN								
BEAMS B2								
SHEAR STRENGTH	47.9	48.0	55.8	57.7	79.6	79.9	92.1	95.6
AT CRITICAL SHEAR LOC.								
BEAMS B2								
SERVICEABILITY CONC.	35.9	37.4	37.6	38.4	-	-	-	-
TENSION AT MID-SPAN								
BEAMS B3								
FLEXURAL STRENGTH	34.9	36.4	36.5	37.3	58.3	60.7	61.0	62.3
MOMENT AT MID-SPAN								
BEAMS B3								
SHEAR STRENGTH	47.9	48.0	55.8	57.7	79.6	79.9	92.1	95.6
AT CRITICAL SHEAR LOC.								
BEAMS B3								
SERVICEABILITY CONC.	31.4	32.7	32.9	33.6	-	-	-	-
TENSION AT MID-SPAN								

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT			RATINO OR MET		OPERATING RATING BY LOAD FACTOR METHOD			
	(ENGLIS	H TONS)	(ENGLISH TONS)			
	SU4	SU5	SU6	SU7	SU4	SU5	SU6	SU7
BEAMS B4 FLEXURAL STRENGTH MOMENT AT MID-SPAN	28.8	30.0	30.1	30.8	48.1	50.1	50.3	51.4
BEAMS B4 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	47.9	48.0	55.8	57.7	97.6	79.9	92.1	95.6
BEAMS B4 SERVICEABILITY CONC. TENSION AT MID-SPAN	25.2	26.3	26.4	26.9	1	1	-	-
BEAMS B5 FLEXURAL STRENGTH MOMENT AT MID-SPAN	48.7	50.8	51.0	52.1	81.4	84.8	85.2	87.0
BEAMS B5 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	50.5	51.2	60.0	61.8	84.0	85.3	99.1	102.5
BEAMS B5 SERVICEABILITY CONC. TENSION AT MID-SPAN	48.1	50.2	50.4	51.5	1	ı	ı	-
BEAM B6 FLEXURAL STRENGTH MOMENT AT MID-SPAN	43.3	45.1	45.3	46.3	72.4	75.4	75.7	77.4
BEAM B6 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	47.9	48.0	55.8	57.7	79.6	79.9	92.1	95.6
BEAM B6 SERVICEABILITY CONC. TENSION AT MID-SPAN	32.2	33.6	33.7	34.5	-	-	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	LOA	D FACT ENGLIS	RATING OR MET	HOD)	OPERATING RATING BY LOAD FACTOR METHOD (ENGLISH TONS)			
	SU4	SU5	SU6	SU7	SU4	SU5	SU6	SU7
BEAMS B7 FLEXURAL STRENGTH MOMENT AT MID-SPAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BEAMS B7 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	47.9	48.0	55.8	57.7	79.6	79.9	92.1	95.6
BEAMS B7 SERVICEABILITY CONC. TENSION AT MID-SPAN	0.0	0.0	0.0	0.0	ı	ı	ı	-
BEAMS B8 FLEXURAL STRENGTH MOMENT AT MID-SPAN	48.7	50.8	51.0	52.1	81.4	84.8	85.2	87.0
BEAMS B8 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	50.5	51.2	60.0	61.8	84.0	85.3	99.1	102.5
BEAMS B8 SERVICEABILITY CONC. TENSION AT MID-SPAN	48.7	50.5	51.0	52.4	1	1	ı	-
BEAM B9 FLEXURAL STRENGTH MOMENT AT MID-SPAN	25.4	26.5	26.6	27.2	42.4	44.2	44.4	45.4
BEAM B9 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	47.9	48.0	55.8	57.7	79.6	79.9	92.1	95.6
BEAM B9 SERVICEABILITY CONC. TENSION AT MID-SPAN	21.7	22.6	22.7	23.2	-	-	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (ENGLISH TONS)					D FACT	G RATING OR MET SH TONS	HOD
	SU4	SU5	SU6	SU7	SU4	SU5	SU6	SU7
BEAMS B10 FLEXURAL STRENGTH MOMENT AT MID-SPAN	62.0	64.6	64.9	66.3	103.5	107.8	108.3	110.7
BEAMS B10 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	76.3	74.8	84.7	89.2	127.5	124.6	140.2	147.8
BEAMS B10 SERVICEABILITY CONC. TENSION AT MID-SPAN	56.3	58.6	58.9	60.2	ı	ı		ı

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	LOAD FACT	RATING BY OR METHOD SH TONS)	OPERATING RATING BY LOAD FACTOR METHOD (ENGLISH TONS)		
	EV2	EV3	EV2	EV3	
BEAMS B1 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	65.9	4.6	
BEAMS B1 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	87.8	87.0	
BEAMS B1 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-	
BEAMS B2 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	68.5	67.2	
BEAMS B2 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	86.6	88.9	
BEAMS B2 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-	
BEAMS B3 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	60.9	59.6	
BEAMS B3 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	86.6	88.9	
BEAMS B3 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-	

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (ENGLISH TONS)		OPERATING RATING BY LOAD FACTOR METHOD (ENGLISH TONS)	
	EV2	EV3	EV2	EV3
BEAMS B4 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	50.3	49.2
BEAMS B4 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	86.6	88.9
BEAMS B4 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-
BEAMS B5 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	85.2	83.3
BEAMS B5 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	93.8	93.0
BEAMS B5 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-
BEAM B6 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	75.5	74.0
BEAM B6 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	86.6	88.9
BEAM B6 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (ENGLISH TONS)		OPERATING RATING BY LOAD FACTOR METHOD (ENGLISH TONS)	
	EV2	EV3	EV2	EV3
BEAMS B7 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	0.0	0.0
BEAMS B7 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	86.6	88.9
BEAMS B7 SERVICEABILITY CONC. TENSION AT MID-SPAN	1	-	-	-
BEAMS B8 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	84.7	83.3
BEAMS B8 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	93.8	93.0
BEAMS B8 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-
BEAM B9 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	44.4	43.4
BEAM B9 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	-	-	86.6	88.9
BEAM B9 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (ENGLISH TONS)		D FACTOR METHOD LOAD FACTOR METHOI	
	EV2	EV3	EV2	EV3
BEAMS B10 FLEXURAL STRENGTH MOMENT AT MID-SPAN	-	-	107.9	105.9
BEAMS B10 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	1	-	132.1	135.5
BEAMS B10 SERVICEABILITY CONC. TENSION AT MID-SPAN	-	-	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (METRIC TONS)		OPERATING RATING BY LOAD FACTOR METHOD (METRIC TONS)	
	MS18	MS (EQUIV.)	MS18	MS (EQUIV.)
BEAMS B1				
FLEXURAL STRENGTH	37.6	MS20.9	87.8	MS48.8
MOMENT AT MID-SPAN				
BEAMS B1	50.5) (CO) 1	02.0	NG 46.1
SHEAR STRENGTH	50.5	MS28.1	82.9	MS46.1
AT CRITICAL SHEAR LOC. BEAMS B1				
SERVICEABILITY CONC.	33.5	MS18.6		
TENSION AT MID-SPAN	33.3	W1516.0	_	-
BEAMS B2				
FLEXURAL STRENGTH	39.2	MS21.8	81.7	MS45.4
MOMENT AT MID-SPAN				
BEAMS B2				
SHEAR STRENGTH	56.2	MS31.2	104.6	MS58.1
AT CRITICAL SHEAR LOC.				
BEAMS B2				
SERVICEABILITY CONC.	34.1	MS19.0	-	-
TENSION AT MID-SPAN				
BEAMS B3	2.4 =	3.634.0.0		3.50.40.4
FLEXURAL STRENGTH	34.7	MS19.3	72.6	MS40.4
MOMENT AT MID-SPAN BEAMS B3				
SHEAR STRENGTH	51.6	MC20 7	106.1	MCEOO
AT CRITICAL SHEAR LOC.	31.0	MS28.7	106.1	MS59.0
BEAMS B3				
SERVICEABILITY CONC.	31.3	MS17.4	_	_
TENSION AT MID-SPAN	<u>31.3</u>	T. / 10111	_	_
N. A.				

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (METRIC TONS)		OPERATING RATING BY LOAD FACTOR METHOD (METRIC TONS)	
	MS18	MS (EQUIV.)	MS18	MS (EQUIV.)
BEAMS B4 FLEXURAL STRENGTH MOMENT AT MID-SPAN	28.7	MS16.0	47.9	MS26.6
BEAMS B4 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	51.6	MS28.7	84.7	MS47.1
BEAMS B4 SERVICEABILITY CONC. TENSION AT MID-SPAN	25.1	MS14.0	-	-
BEAMS B5 FLEXURAL STRENGTH MOMENT AT MID-SPAN	48.5	MS27.0	81.1	MS45.1
BEAMS B5 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	55.8	MS31.0	91.7	MS51.0
BEAMS B5 SERVICEABILITY CONC. TENSION AT MID-SPAN	48.0	MS26.7	-	-
BEAMS B6 FLEXURAL STRENGTH MOMENT AT MID-SPAN	43.2	MS24.0	72.1	MS40.1
BEAMS B6 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	51.6	MS28.7	84.7	MS47.1
BEAMS B6 SERVICEABILITY CONC. TENSION AT MID-SPAN	32.1	MS17.9	-	-

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (METRIC TONS)		OPERATING RATING BY LOAD FACTOR METHOD (METRIC TONS)	
	MS18	MS (EQUIV.)	MS18	MS (EQUIV.)
BEAMS B7				
FLEXURAL STRENGTH	0.0	MS.0	0.0	MS.0
MOMENT AT MID-SPAN				
BEAMS B7				
SHEAR STRENGTH	51.6	MS28.7	84.7	MS47.1
AT CRITICAL SHEAR LOC.				
BEAMS B7				
SERVICEABILITY CONC.	0.0	MS.0	-	-
TENSION AT MID-SPAN				
BEAMS B8				
FLEXURAL STRENGTH	48.5	MS27.0	81.1	MS45.1
MOMENT AT MID-SPAN				
BEAMS B8				
SHEAR STRENGTH	55.8	MS31.0	91.7	MS51.0
AT CRITICAL SHEAR LOC.				
BEAMS B8				
SERVICEABILITY CONC.	48.2	MS26.8	-	-
TENSION AT MID-SPAN				
BEAMS B9				
FLEXURAL STRENGTH	25.3	MS14.1	42.3	MS23.5
MOMENT AT MID-SPAN				
BEAMS B9				
SHEAR STRENGTH	51.6	MS28.7	84.7	MS47.1
AT CRITICAL SHEAR LOC.				
BEAMS B9				
SERVICEABILITY CONC.	21.6	MS12.0	-	-
TENSION AT MID-SPAN				

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

TOWN/CITY: PITTSFIELD BRIDGE NO.: P-10-002

CARRIES: HOLMES ROAD OVER: HOUSATONIC RAILROAD

STRUCTURE NO.: P10002-0DY-DOT-634 BIN NO.: 0DY

BRIDGE COMPONENT	INVENTORY RATING BY LOAD FACTOR METHOD (METRIC TONNES)		HOD LOAD FACTOR METHO	
	MS18	MS (EQUIV.)	MS18	MS (EQUIV.)
BEAMS B10 FLEXURAL STRENGTH MOMENT AT MID-SPAN	52.7	MS29.3	103.1	MS57.3
BEAMS B10 SHEAR STRENGTH AT CRITICAL SHEAR LOC.	78.3	MS43.5	128.7	MS71.5
BEAMS B10 SERVICEABILITY CONC. TENSION AT MID-SPAN	56.1	MS31.2	N/A	N/A

- Midspan refers to locations from 0.40L to 0.60L
- See Appendix D for locations of critical shear

LOCATION MAP

PITTSFIELD HOLMES ROAD OVER HOUSATONIC RAILROAD BRIDGE NO. P-10-002 N ss Hall's School 🔾 DCR, West Region Headquarters Arrowhead Museum Bridge No. P-10-002 Holmes Road Over Housatonic Railroad Pittsfield, MA Berkshire Mountain Lodge

DESCRIPTION OF BRIDGE

PITTSFIELD HOLMES ROAD OVER HOUSATONIC RAILROAD BRIDGE NO. P-10-002 Date of Construction: 1977 H20 Original Design Loading: Posted Limit: None Bridge Type: Prestressed concrete butted box beams $56^{\circ} - 36' - 00''$ Skew: 68'-1 7/16" (center-to-center of bearing) Spans: 41'-3" out-to-out Width of Bridge Deck: 32'-9" curb-to-curb Roadway Width: Roadway Surface: Bituminous concrete wearing surface Curbs: Granite curbs (both sides) Sidewalk/Walkway/Median: Safety walk (north side) and Sidewalk (south side) Bridge Railing: Aluminum bridge rail AL-3 and protective screen (both sides) Approach Railing: Steel guardrails (all four corners) Superstructure: Prestressed concrete butted box beams Modifications to Original Superstructure: None **Utilities:** None Substructure: Concrete Abutments

None

Modifications to Original Substructure:

RATING ANALYSIS ASSUMPTIONS AND CRITERIA

PITTSFIELD

HOLMES ROAD OVER HOUSATONIC RAILROAD

BRIDGE NO. P-10-002

The rating analysis is based on available plans, Inspection Report, and a site visit by AI Engineers, Inc. on July 7, 2017. This revised rating report incorporated the 2018 Routine Inspection Report as well as Section 7.2.10 – "Special Instructions for Deteriorated Prestressed Beam Load Ratings" of Draft 2018 Edition LRFD Bridge Manual, made available by MassDOT. The superstructure is a single span bridge consisting of ten (10) prestressed concrete box beams.

All superimposed dead load was distributed to each beam using Section 7.2.3.4B of the *MassDOT Bridge Manual*.

The live loads used for these ratings were the standard AASHTO H20 loading, HS20 loading, Type 3, Type 3S2, SU4, SU5, SU6, SU7, EV2 and EV3 trucks shown in Figures 7.9, 7.10 and 7.11 of the Draft *MassDOT Bridge Manual*. The statutory loads are 20 tons for H20 trucks, 25 tons for Type 3 trucks, 36 tons for both Type 3S2 and HS20 trucks, 27 tons for SU4 trucks, 31 tons for SU5 trucks, 34.75 tons for SU6 trucks, 38.75 tons for SU7 trucks, 28.75 tons for EV2, and 43 tons for EV3 tons.

The inventory and operating capacities of the bridge were determined in accordance with the relevant provisions of the Seventeenth Edition of the American Association of State Highway and Transportation Officials (AASHTO), *Standard Specifications for Highway Bridges*, the AASHTO Second Edition of the *Manual for Bridge Evaluation* (MBE), and the July 2013 and Draft 2018 editions of the *MassDOT Bridge Manual*, Part I, Chapter 7.

The prestressed concrete beams were modeled as a girder-system using the AASHTOWare Bridge Rating software (Version 6.8.2). The beams have been numbered 1 through 10 from North to South in accordance with the plans and inspection report. The results are presented in the breakdown of the bridge rating.

Per *MassDOT Bridge Manual* guidelines Chapter 7, Section 7.2.4.2B, the rating due to the lane loading was not considered because the span length is less than 200 ft.

Load factor ratings were calculated at both the inventory and operating levels. For the HS20 truck only, in compliance with the requirements of the December 1995 FHWA NBIS Coding Guide, the rating was obtained using the Load Factor Method. As directed by *MassDOT Bridge Manual*, Chapter 7, Section 7.1.7.2B the resulting tonnage English units were converted to metric units using a conversion factor of 0.9.

RATING ANALYSIS ASSUMPTIONS AND CRITERIA (CONTINUED)

PITTSFIELD HOLMES ROAD OVER HOUSATONIC RAILROAD

BRIDGE NO. P-10-002

Based on the construction plans and the information provided in AASHTO Manual for Bridge Evaluation (MBE 6B.5.3.3), the following material properties were used:

REINFORCING STEEL,

 $f_v = 60,000 \text{ psi}$

PRESTRESSED BEAM CONCRETE,

 $f'_{c} = 5,000 \text{ psi (final)}$

 $f'_c = 4,000 \text{ psi (at release)}$

Allowable Tensile Stress = 425 psi $(6\sqrt{f'_c})$

Allowable Compressive Stress (inventory) = $f_c = 0.4f'_c = 2000 \text{ psi}$

Allowable Compressive Stress (operating) = $f_c = 0.6f'_c = 3000 \text{ psi}$

PRESTRESSING STEEL,

Ultimate Strength, Fu = 270 ksi (1/2"diameter SR)

Yield Strength, fy = 0.8*Fu f's=216 ksi (inventory)

Yield Strength, fy = 0.9*Fu f's=243 ksi (operating)

RATING ANALYSIS ASSUMPTIONS AND CRITERIA (CONTINUED)

<u>PITTSFIELD</u> <u>HOLMES ROAD OVER HOUSATONIC RAILROAD</u>

BRIDGE NO. P-10-002

Analysis Assumptions:

- The inspection report noted that the joints between all beams have evidence of leakage with an as-built condition misalignment between adjacent beams at several locations. The inspection report also noted that the transverse post-tensioning strands had areas of corrosion with delamination that did not produce any strand losses. Since there is no note that specifies the condition or failure of shear keys, the analysis was performed assuming the shear keys as still intact and functioning.
- Standard live load distribution factors were computed by BrR and verified by hand calculations in accordance with AASHTO Standard Specifications for Highway Bridges Section 3.23.4.
- The wearing surface load was calculated based on the field measured average curb reveals (11" on north side and 10.75" on south side) and the maximum thickness (6.5") shown in the plan at the center of roadway (see Appendix C for details). The average thickness of 4.75" was input in BrR under the Typical Section tab as a DW load.
- As shown in the plans, the shear reinforcements around supports were aligned skewed to the beam's longitudinal axis and perpendicular to the beam's longitudinal axis for the rest of the beam length. Thus, the stirrup spacing around supports was taken as the average of the stirrup spacing's at the beam supports. The stirrup size of #4 bars was used throughout the beam length.
- The sidewalk was considered as mountable and the operating condition live load distribution factors for B9 and B10 were calculated by the lever rule.
- Per MassDOT comments, the superimposed dead loads were distributed to each beam in proportion to the tributary moment of inertia.
- The MassDOT Draft 2018 Edition LRFD Manual Section 7.2.10 was used to analyze the areas of deterioration of the prestressed beams. The procedure below was followed to obtain the rating:
 - Section cuts (A-A to H-H) were created at locations of deficiencies that apply to MassDOT Section 7.2.10 in order to illustrate the extent and range of deterioration.
 - 2. For each section cut, an equivalent prestressing strand area and center of gravity was calculated based on the guidelines noted in MassDOT Section 7.2.10.

RATING ANALYSIS ASSUMPTIONS AND CRITERIA (CONTINUED)

PITTSFIELD

HOLMES ROAD OVER HOUSATONIC RAILROAD

BRIDGE NO. P-10-002

- 3. Using the equivalent prestressing strand area, an equivalent jacking force was calculated. Based on the 2018 Routine Inspection Report, field visit and MassDOT Section 7.2.10, the locations and ranges of deficiencies corresponding to each section cut were determined. The mid-span section cuts were analyzed from 0.40L to 0.60L, in 0.05L increments. The end-span section cut was analyzed with respect to the range of deterioration, broken up into quarter points.
- 4. In BrR, Member Alternatives were created for each deterioration range that corresponds to the section cuts established in step 2. These member alternatives (referred to as "Section Cut Member Alternatives" hereafter) are copies of the original Member Alternatives. In each Section Cut Member Alternative, under the Strand Layout tab, the Force and "P and CGS only" Description Type option was selected and the Force and CGS values calculated in Step 4 were input. Points of Interest were then created at the points noted in Step 3 for both the original Member Alternatives and the Section Cut Member Alternatives.
- 5. The Section Cut Member Alternatives were then analyzed to view the capacities generated by BrR:
 - o For Flexural Strength, a screenshot of the moment capacity at each Point of Interest was taken. Then, at each Point of Interest in the original Member Alternative, the moment capacities were overridden by the capacities shown in the screenshots.
 - o For Concrete Tensile Stress, a screenshot of the tensile stress rating at each Point of Interest was taken. The tensile stress cannot be overridden in the Point of Interest tabs. Therefore, the controlling ratings from the screenshots were considered the controlling tensile stress ratings for each beam (with the deterioration ranges taken into account).
 - For Shear Strength, a screenshot of the shear capacity at each Point of Interest was taken. Then, at each Point of Interest in the original Member Alternative, the shear capacity was overridden by the capacities shown in the screenshot.
- 6. The original Member Alternatives were then analyzed with the override capacity Points of Interest defined in step 6. For the concrete tensile stress rating, the ratings from the Section Cut Member Alternatives were compared with the ratings from the original Member Alternatives and the lowest rating for each beam was considered the controlling rating for the tensile stress limit state.

Since there is deterioration located at and near mid-span and since these critical locations control the rating, *MassDOT Draft 2018 LRFD Bridge Manual Section 7.2.10.6* was not considered because the locations of strand re-development would not control the rating.

EVALUATION OF RATING AND RECOMMENDATIONS

PITTSFIELD

HOLMES ROAD OVER HOUSATONIC RAILROAD

BRIDGE NO. P-10-002

Interior Beam B7 produces a 0 ton rating for the H20, Type 3, Type 3S2, HS20, SU4, SU5, SU6, SU7, EV2, and EV3 vehicles at both the inventory and operating levels. Beam B3 produces a below statutory rating for the HS20,SU6, and SU7 vehicles at the inventory level. Beam B4 produces a below statutory rating for the Type 3S2, HS20, SU4, SU5, SU6, SU7 vehicles at the inventory level. Beam B6 produces a below statutory rating for the HS20, SU6, SU7 vehicles at the inventory level. Beam B9 produces a below statutory rating for the Type 3, Type 3S2, HS20, SU4, SU5, SU6, SU7 vehicles at the inventory level.

The inventory level ratings by the load factor method are governed by the flexural and concrete tensile capacity of Interior Beam B7 for H20 (0.0 tons), Type 3 (0.0 tons), Type 3S2 (0.0 tons), HS20 (0.0 tons), SU4 (0.0 tons), SU5 (0.0 tons), SU6 (0.0 tons) and SU7 (0.0 tons).

The operating level ratings by the load factor method are governed by flexural capacity of Interior Beam B7 for H20 (0.0 tons), Type 3 (0.0 tons), Type 3S2 (0.0 tons), HS20 (0.0 tons), SU4 (0.0 tons), SU5 (0.0 tons), SU6 (0.0 tons), SU7 (0.0 tons), EV2 (0.0 tons) and EV3 (0.0 tons) vehicles.

The MS18 load factor ratings (inventory and operating) are governed by flexural and concrete tensile capacity of Interior Beam B7. The MS18 ratings (metric tons) are 0.0 (MS 0.0 equivalent) and 0.0 (MS 0.0 equivalent) for the inventory and operating levels, respectively.

Based on the Routine Inspection report dated May 22, 2018 and site visits on July 7, 2017 by AI Engineers, Inc. the structure is in poor condition.

Based on advanced deterioration and resulting prestressing losses at midspan, which were modeled per MassDOT Draft 2018 Bridge Manual Section 7.2.10, several of the beams are rating with severely reduced flexure capacities. Therefore, AI Engineers, Inc. recommends that bridge replacement be considered. In the interim, we recommend monitoring the beam deterioration by more frequent special member inspection.

AVAILABLE PLANS AND INSPECTION REPORTS

<u>PITTSFIELD</u> <u>HOLMES ROAD OVER HOUSATONIC RAILROAD</u>

BRIDGE NO. P-10-002

The following field inspection reports and plans were made available to AI Engineers, Inc., for use in determining the live load rating of the bridge:

1. Massachusetts Department of Transportation

Routine Inspection Bridge No. P-10-002 (0DY) Structure No. P10002-0DY-DOT-634

Dated: May 22, 2018

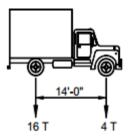
2. <u>Massachusetts Department of Transportation</u>

Structural Inventory and Appraisal Bridge No. P-10-002 (0DY) Structure No. P10002-0DY-DOT-634

3. The Commonwealth of Massachusetts

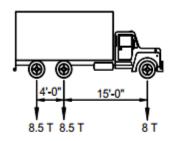
Proposed Bridge in Pittsfield Holmes Road Over Conrail R.R. May 21, 1977 Sheets 1 of 14 to 14 of 14

TRUCK LOADINGS

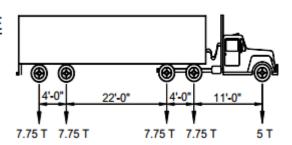

PITTSFIELD

HOLMES ROAD OVER HOUSATONIC RAILROAD

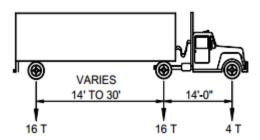
BRIDGE NO. P-10-002


H20 VEHICLE

TOTAL WEIGHT 20 TONS


TYPE 3 VEHICLE

TOTAL WEIGHT 25 TONS

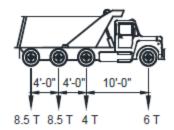

TYPE 3S2 VEHICLE

TOTAL WEIGHT 36 TONS

HS20 VEHICLE

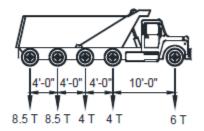
TOTAL WEIGHT 36 TONS

TRUCK LOADINGS

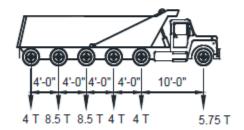

PITTSFIELD

HOLMES ROAD OVER HOUSATONIC RAILROAD

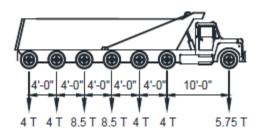
BRIDGE NO. P-10-002


SU4 TRUCK

TOTAL WEIGHT 27 TONS


SU5 TRUCK

TOTAL WEIGHT 31 TONS

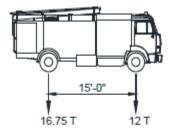

SU6 TRUCK

TOTAL WEIGHT 34.75 TONS

SU7 TRUCK

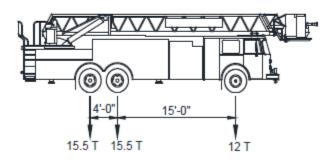
TOTAL WEIGHT 38.75 TONS

TRUCK LOADINGS


PITTSFIELD

HOLMES ROAD OVER HOUSATONIC RAILROAD

BRIDGE NO. P-10-002


EV2 VEHICLE

TOTAL WEIGHT 28.75 TONS

EV3 VEHICLE

TOTAL WEIGHT 43 TONS

APPENDIX A INSPECTION REPORTS

APPENDIX B PHOTOS

INDEX OF PHOTOS

<u>PITTSFIELD</u>	HOLMES ROAD OVER HOUSATONIC RAILROAD	BRIDGE NO. P-10-002
WEST APPROACH LO	OKING EAST	B-1
EAST APPROACH LOC	OKING WEST	B–1
NORTH ELEVATION L	OOKING SOUTH	B–2
UNDERSIDE OVERVIE	EW	B-2
HOUSATONIC RAILRO	OAD LOOKING NORTH	B–3
HOUSATONIC RAILRO	OAD LOOKING SOUTH	B-3
WEARING SURFACE (OVERVIEW	B–
SPALLING AND EXPO	SED TENDONS (BEAM 6)	B–
SPALLING AND EXPO	SED TENDONS (BEAM 7)	B-5

P-10-002 (0DY) WEST APPROACH LOOKING EAST

P-10-002 (0DY) EAST APPROACH LOOKING WEST

P-10-002 (0DY) NORTH ELEVATION LOOKING SOUTH

P-10-002 (0DY) UNDERSIDE OVERVIEW

P-10-002 (0DY) HOUSATONIC RAILROAD LOOKING NORTH

P-10-002 (0DY) HOUSATONIC RAILROAD LOOKING SOUTH

P-10-002 (0DY) WEARING SURFACE OVERVIEW

P-10-002 (0DY) SPALLING AND EXPOSED TENDONS (BEAM 6)

P-10-002 (0DY) SPALLING AND EXPOSED TENDONS (BEAM 7)

APPENDIX C COMPUTATIONS

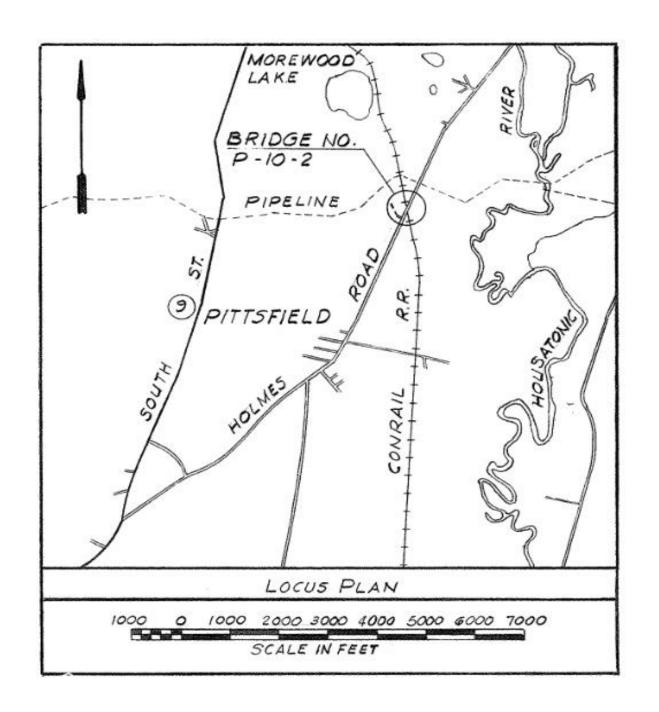
INDEX OF COMPUTATIONS

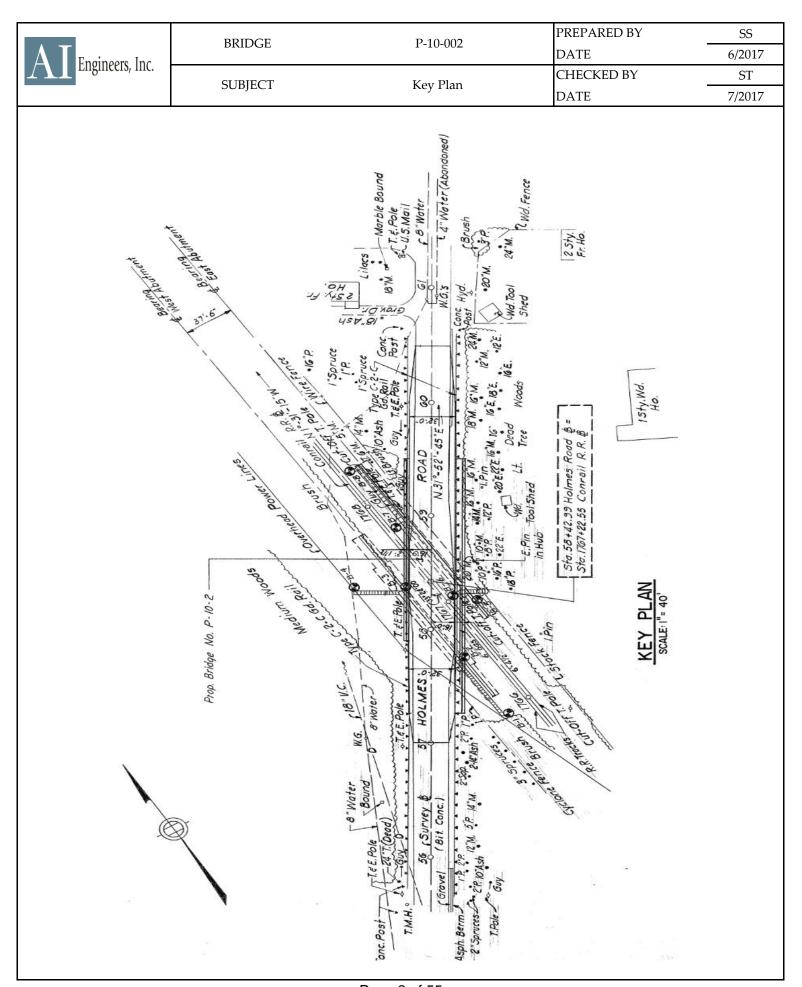
<u>PITTSFIELD</u>	HOLMES ROAD OVER HOUSATONIC RAILROAD	BRIDGE NO. P-10-002
BRIDGE PLANS		1-14
DEAD LOAD CALCUL	ATIONS	15-21
DIAPGRAGM LOADS.		22-25
LIVE LOAD DISTRIBU	TION FACTORS	26-28
LOAD SUMMARY		29
BEAM INPUT SUMMA	RY	30-37
PRESTRESSING STRA	ND LOSS LEGEND	38
PRESTRESSING STRA	ND LOSS BEAM DETAILS	39-55

CHECK OF CALCULATIONS SUBMISSION

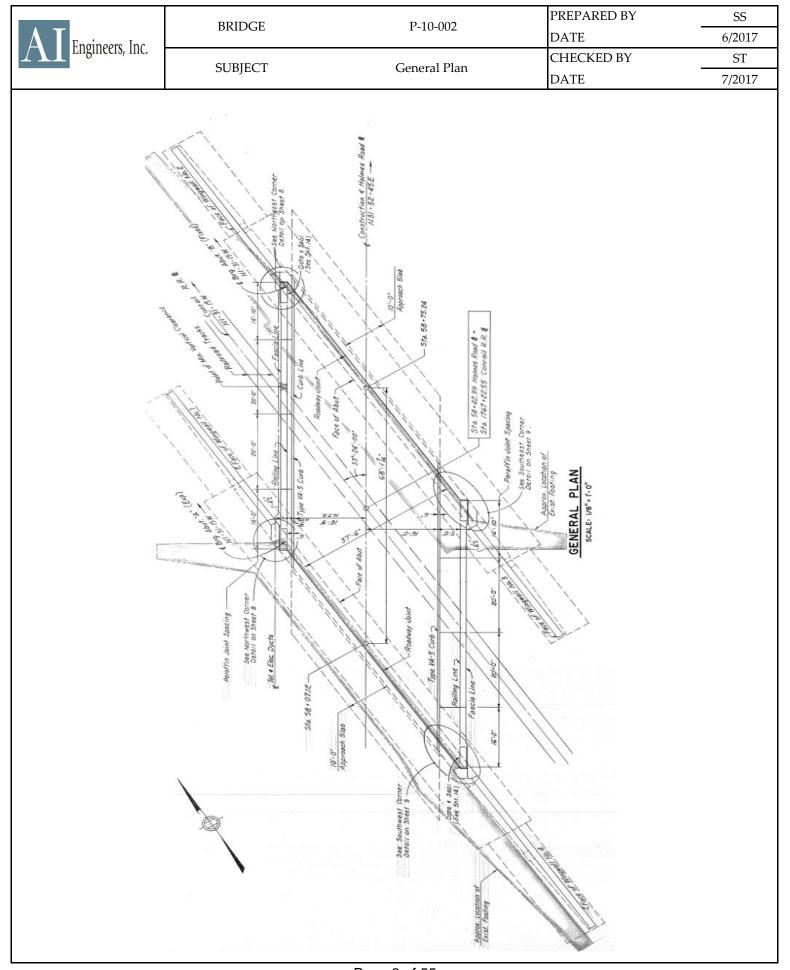
"I hereby state that I have checked the methods, assumptions, load distributions, computer input files, and all calculations for this rating report for bridge No. P-10-002 (0DY). By signing below, I confirm that I agree with all methods, assumptions, load distributions, and calculations contained in this rating report.

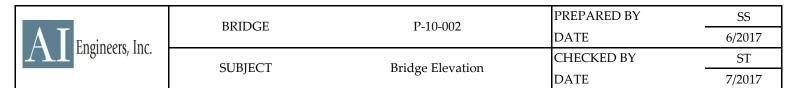
BASIL BANTIMBA, P.E.

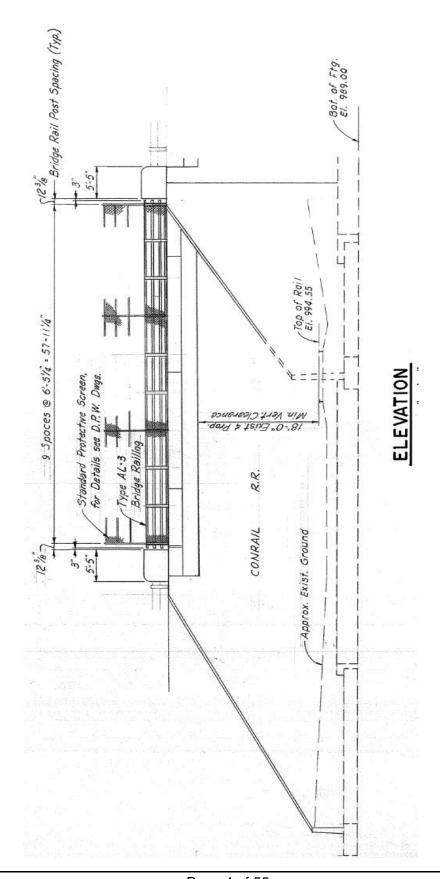

Sail & balinter

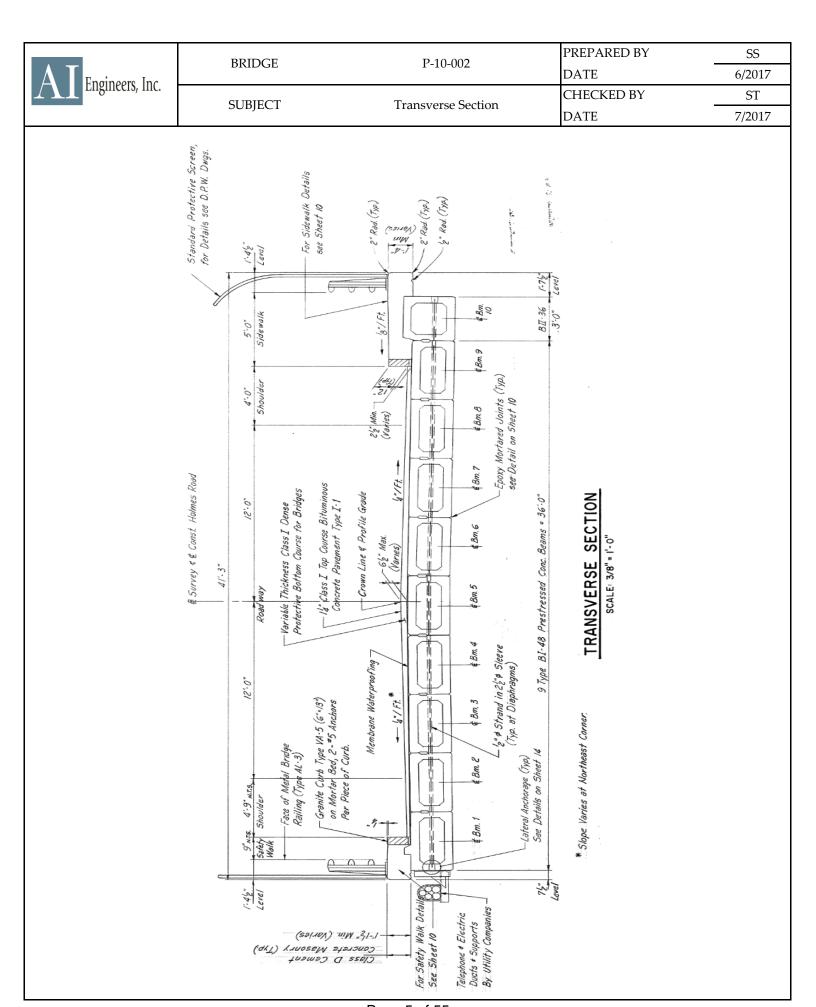

DATE

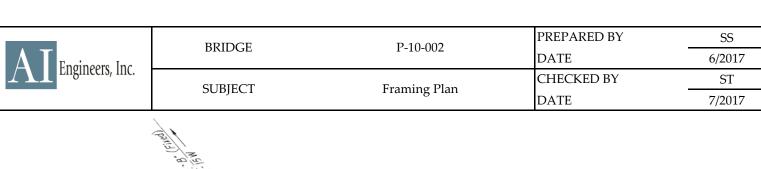
3/6/2019

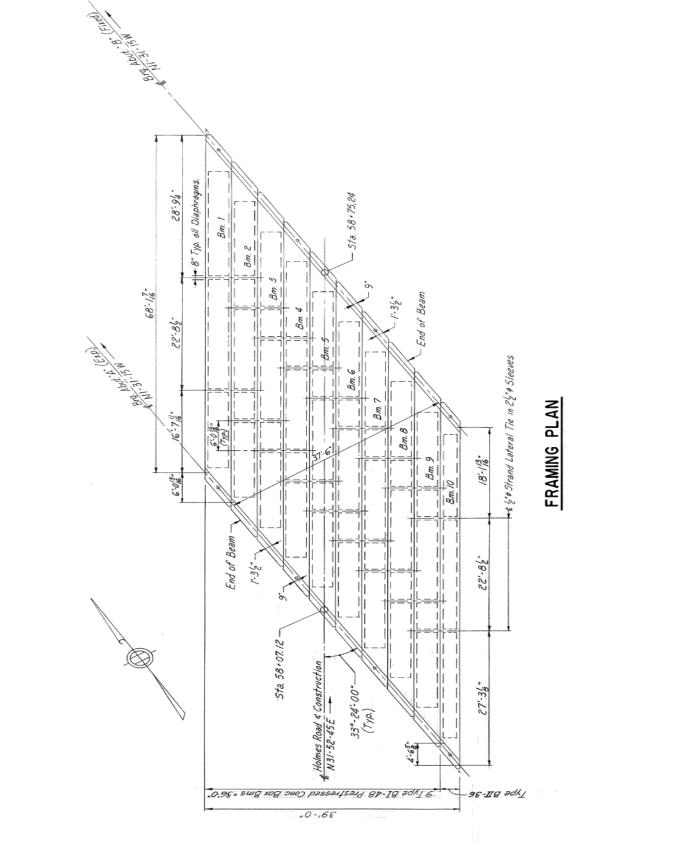



BRIDGE	P-10-002	PREPARED BY SS	
DRIDGE	1°-10-002	DATE	6/2017
SUBJECT	Locus Plan	CHECKED BY	ST
SOBJECT	Locus i iaii	DATE	7/2017

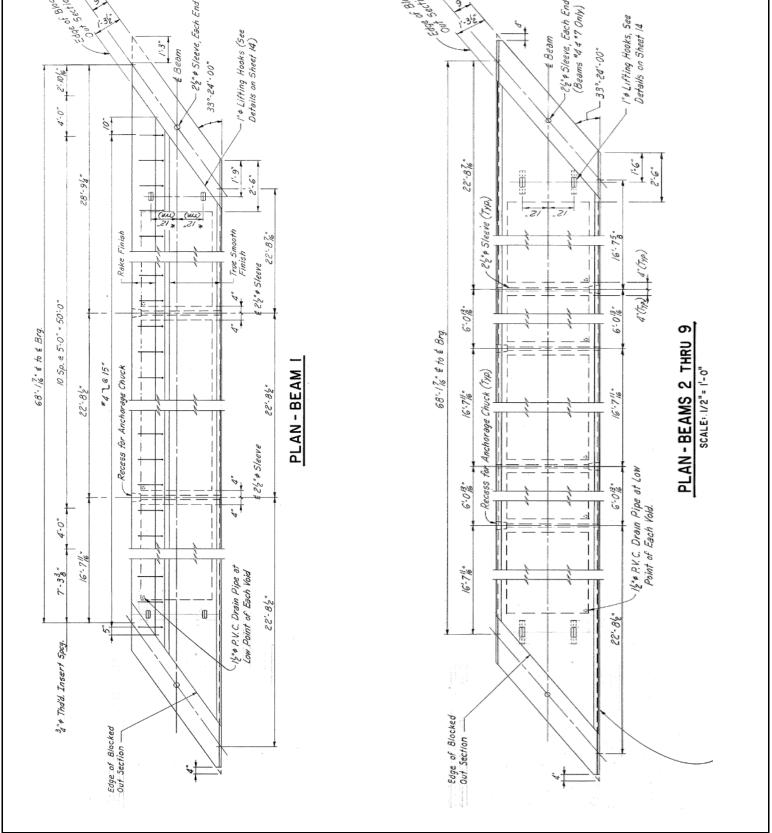



Page 2 of 55

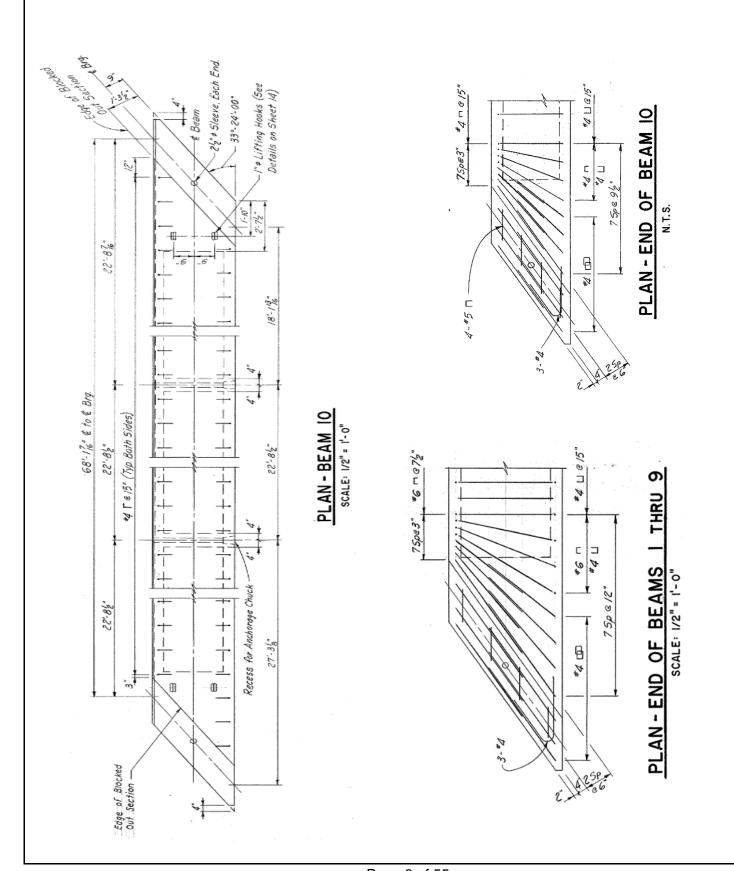


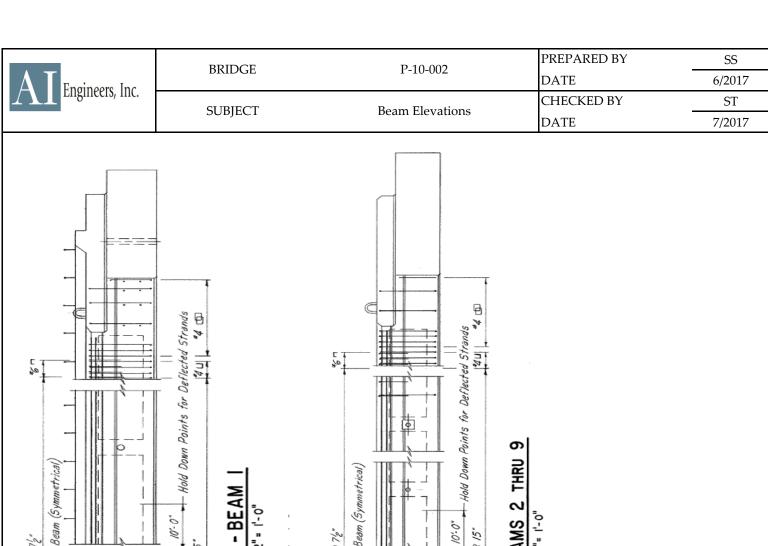


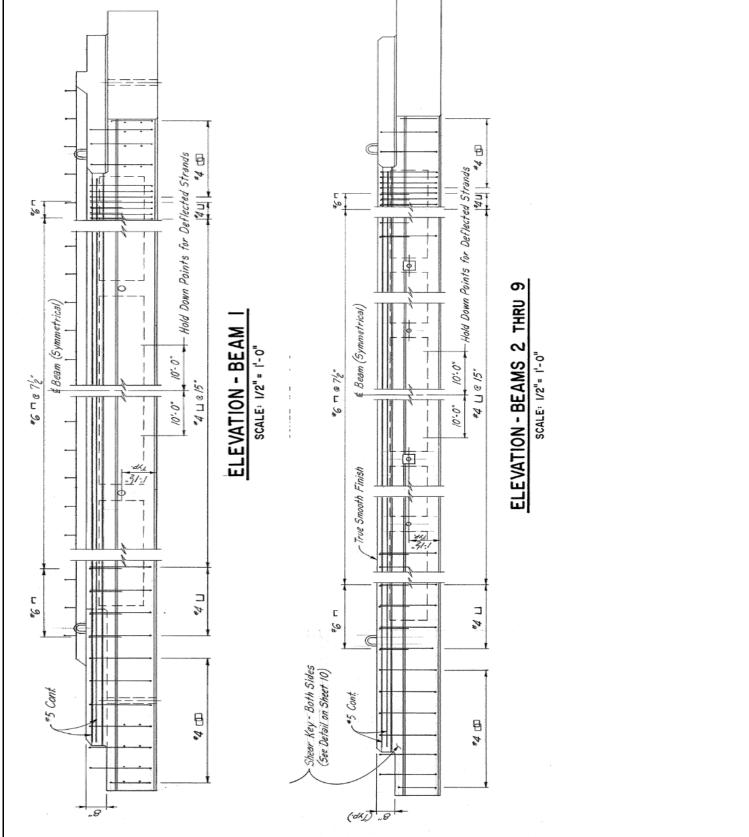
Page 4 of 55

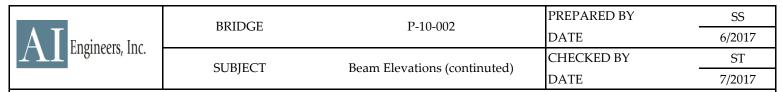


Page 5 of 55








BRIDGE	P-10-002	PREPARED BY	SS
DRIDGE	r-10-002	DATE	6/2017
SUBJECT	Beam Plans (continued)	CHECKED BY	ST
30DJEC1	beam rians (continued)	DATE	7/2017

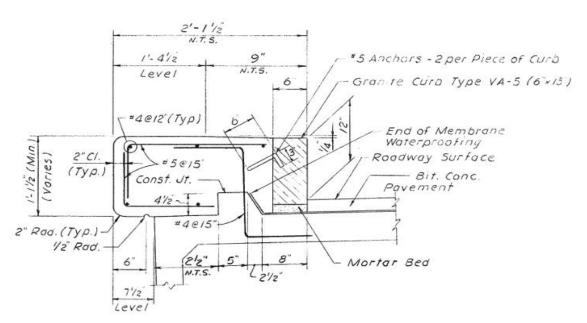


Page 9 of 55

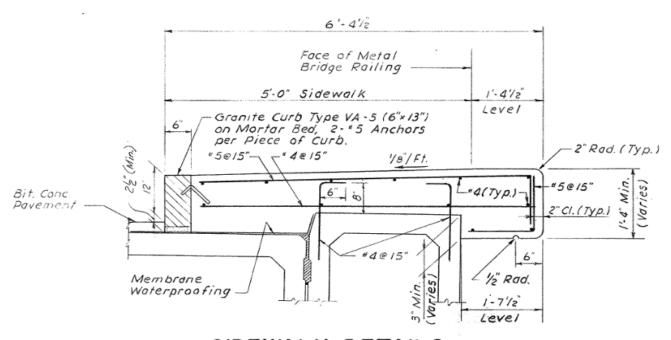
BRIDGE	P-10-002	PREPARED BY SS	
DRIDGE	1 -10-002	DATE	6/2017
CLIDIECT	Beam Details	CHECKED BY	ST
SUBJECT	beam Detans	DATE	7/2017

22" \$ Sleeve - Beams "4 4 "7 Only. 3'-112' 3'-112" 3'-12" 5° 2" Chamfer 3'-12" *6 e 72' 2/1°C1. \$5 e 72 -5-45 5% 111 1 Ш †† le" # P.V.C. Drain 7.3" 13" = 10 Spe2" = 1'-8" 105pe2"= 1-8" 4" 105pe2"=1-8" 3 Chamfer 10 Spe2" = 1-8" SECTION AT END OF BEAM SECTION AT MID SPAN OF BEAM

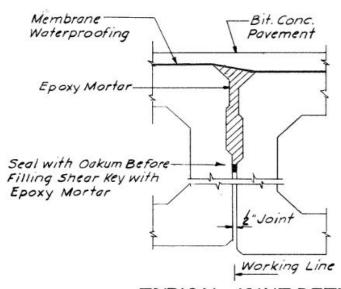
BEAMS 2 THRU 9

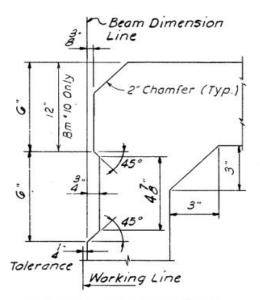

Denotes Deflected Strands
 Denotes Straight Strands
 All Strands are ½* \$ (210 K)

44 @ 4 End Stirrups

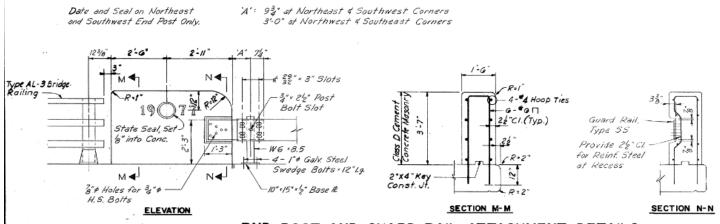

- 2-112 2-11/2 24 #4015 Rake Finish -2°C1. 5% *5e15 1-10 5.9" :01:1 #4015 1'z" + PVC Drain 75pa2"-12 SECTION AT END OF BEAM SECTION AT MID SPAN OF BEAM BEAM 10 #4 & 4 End Stirrups SCALE: I" = I'- 0" Denotes Deflected Strands
 Denotes Straight Strands
 All Strands '2" # (270 k)
 - Page 11 of 55

DDID CE	P. 4.0.000	PREPARED BY SS	
BRIDGE	P-10-002	DATE	6/2017
SUBJECT	Safaty Walk + Sidawalk Datails	CHECKED BY	ST
SUBJECT	Safety Walk + Sidewalk Details	DATE	7/2017

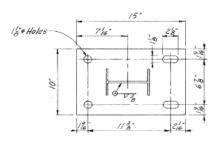

SAFETY WALK DETAILS



SIDEWALK DETAILS


BRIDGE	P-10-002	PREPARED BY	SS
DRIDGE	1-10-002	DATE	6/2017
SUBJECT	Miscellaneous Details	CHECKED BY	ST
30DJEC1	Wiscendieous Details	DATE	7/2017

TYPICAL JOINT DETAIL SCALE: 11/2"=1'-0"


SHEAR KEY DETAIL SCALE:3"=1'-0"

END POST AND GUARD RAIL ATTACHMENT DETAILS SCALE: 1/2" = 1'-0" Galvanizing Shall Conform to ASTM A153 Bolts 4 Washers Shall Conform to ASTM A307

NOTE:

浸・中 Holes F.S. L Slots 2"X 浸・N.S. L--2 Angles 4 x 3 2 x 2 B. to B. @ 5 ' ± 0.C. Stiffener R.s_ Œ A Bolt with 2 + Nood Block with "\$ Hole-Length & Size as Required Ps'toc 2 3 (Fixed) 4 4 (Exp.) -Lubricate Both Faces for Adjustment 5" Weld ₫ ½"¢ Standard Bolts, Nuts € Lock Washers SECTION 6-0 PLAN

SHIPPING DEVICE FOR ROADWAY ARMORED JOINT SCALE: 11/2" = 1'-0"

BASE PLATE DETAIL N.T.S

AI	Engineers, Inc.
----	-----------------

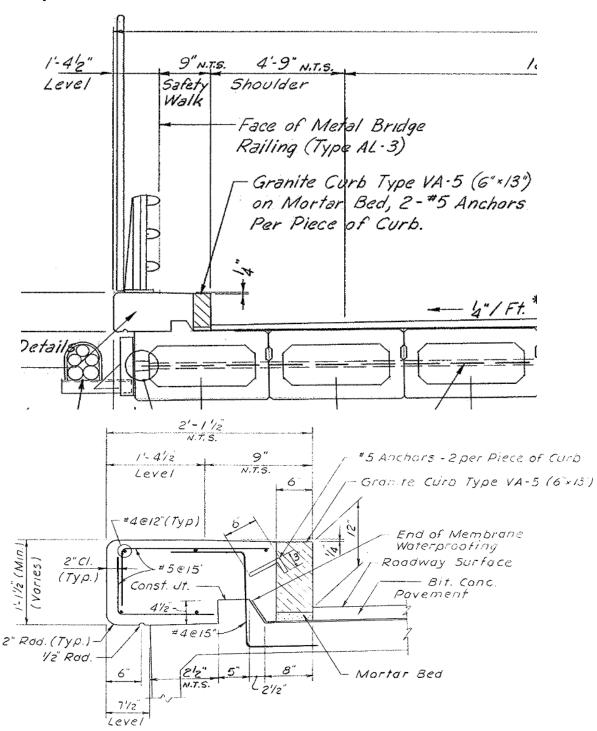
BRIDGE	P-10-002	PREPARED BY SS	
DNIDGE	r-10-002	DATE	6/2017
SUBJECT	Material Properties	CHECKED BY	ST
SUBJECT	Material Properties	DATE	7/2017

NOTES:

- l. Initial Prestress Force (12" & Strands, ASTM Grade 270 K)

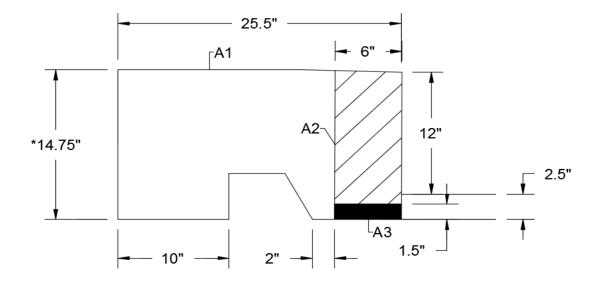
 Beam 1: 30 × 28,910 = 867,300 Lbs.

 Beam 10: 24 × 28,910 = 693,840 Lbs.
- 2. Minimum 28 Day Cylinder Strength of Conc. = 5000 p.s.i.
- 3. Minimum Strength of Conc. at Prestress = 4000 p.s.i.
- 4. Initial Tensioning Per 1/2" & Strand = 28,910 Lbs.
- 5. Dimensions Shown with an Asterisk (*) are Not to Scale.


REINFORCEMENT

ALL BARS SHALL CONFORM TO A.S.T.M. SPECIFICATIONS FOR A615 GRADE 60. UNLESS OTHERWISE SHOWN ON THE PLANS ALL NO.4 BARS SHALL BE LAPPED 20" AND ALL NO.5 BARS SHALL BE LAPPED 26". FOR HORIZONTAL BARS WITH 12" OR MORE OF CONCRETE BELOW THE BAR THE LAP LENGTHS SHALL BE 29" FOR NO.4 BARS AND 36" FOR NO.5 BARS. IF THE ABOVE BARS ARE SPACED 6" OR MORE ON CENTER, THE LAP LENGTH SHALL BE 80% OF THE LAP LENGTH GIVEN ABOVE. ALL OTHER BARS SHALL BE LAPPED AS SHOWN ON THE PLANS.

BRIDGE	P-10-002	PREPARED BY	SS
DKIDGE	1 -10-002	DATE	6/2017
SUBJECT	Sidewalk/Post/Rail Load	CHECKED BY	ST
SOBJECT	Sidewalk/1 Ost/Raii Load	DATE	7/2017


North Side - Safety Walk Dead Load

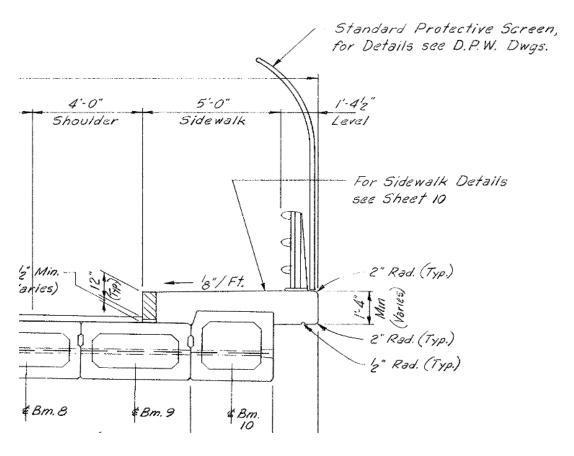
Note: Plan shows utility is attached to exterior face of Beam 1. Since no utility was observed during field visit by AI, utility load was not considered.

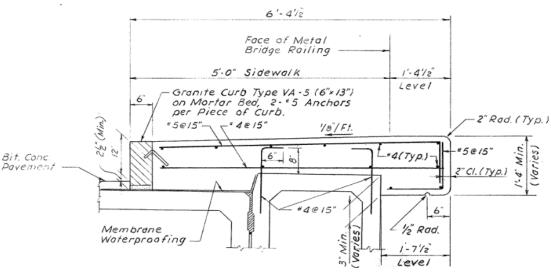
BRIDGE	P-10-002	PREPARED BY	SS
DKIDGE	1-10-002	DATE	6/2017
SUBJECT	Sidewalk/Post/Rail Load	CHECKED BY	ST
30bjec1	Sidewaik/Fost/Raii Load	DATE	7/2017

^{*}Safety walk height varies; therefore, the height shown on the safety walk detail plans was used.

Concrete Safety Walk Area = 259.4 in^2

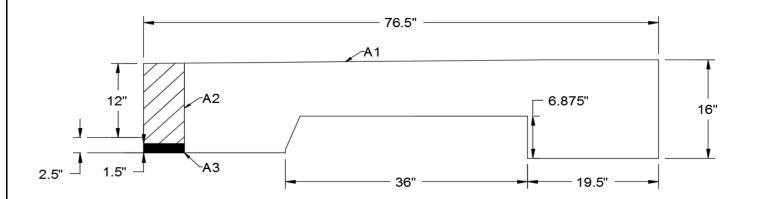
Granite Curb Area = 78.5 in^2


Mortar Area = 9.0 in^2


Safety Walk Area, A1 = Granite Curb Area, A2 =	259.4 78.5	in^2 in^2	(from AutoCAD) (from AutoCAD)
Mortar Area, A3 =	9.0	in^2	(from AutoCAD)
Concrete Unit Weight =	150	lb/ft^3	
Granite Unit Weight =	170	lb/ft^3	
Mortar Unit Weight =	130	lb/ft^3	
Safety Walk Load =	0.270	k/ft	
Granite Curb Load =	0.093	k/ft	
Mortar Load =	0.008	k/ft	
Pedestrian Fence Load =	0.025	k/ft	(from VDOT Pedestrian Fence Details Plan)
Aluminum Rail and Post Load =	0.030	k/ft	(assumed)
Total North Side Load =	0.426	k/ft	

BRIDGE	P-10-002	PREPARED BY SS	
DRIDGE	1 -10-002	DATE	6/2017
SUBJECT	Sidewalk/Post/Rail Load	CHECKED BY	ST
SOBJECT	Sidewaik/i Ost/Raii Load	DATE	7/2017

South Side - Sidewalk

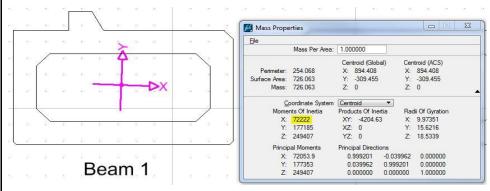


SIDEWALK DETAILS

BRIDGE	P-10-002	PREPARED BY SS	
DKIDGE	1 -10-002	PREPARED BY DATE CHECKED BY DATE	6/2017
SUBIECT	Sidewalk/Post/Rail Load	CHECKED BY	ST
SUBJECT	Sidewaik/i Ost/Raii Load	DATE	7/2017

Concrete Sidewalk Area = 858.4 in^2

Granite Curb Area = 78.2 in^2


Mortar Area = 9.0 in^2

~·· ·· · · · · · · · · · · · · · · · ·			
Sidewalk Area, A1 =	858.4	in^2	(from AutoCAD)
Granite Curb Area, A2 =	78.2	in^2	(from AutoCAD)
Mortar Area, A3 =	9.0	in^2	(from AutoCAD)
Concrete Unit Weight =	150	lb/ft^3	
Granite Unit Weight =	170	lb/ft^3	
Mortar Unit Weight =	130	lb/ft^3	
Sidewalk Load =	0.894	k/ft	
Granite Curb Load =	0.092	k/ft	
Mortar Load =	0.008	k/ft	
Pedestrian Fence Load =	0.030	k/ft	(from VDOT Pedestrian Fence Details Plan)
Aluminum Rail Load =	0.030	k/ft	(assumed)
Total South Side Load =	1.055	k/ft	

AI Engineers, Inc.	BRIDGE P-10-002	PREPARED BY	SS	
	DKIDGE	1-10-002	DATE	6/2017
	SUBJECT Post/Rail Lo	Post/Rail Load Distribution	CHECKED BY	ST
		rost/Kaii Load Distribution	DATE	7/2017
			UPDATED BY	JMA
MassDOT 3.8.2.5			DATE	12/2018

$$L.D.F._k = \frac{I_k}{\sum_{i=1}^n I_i}$$

Beam	I_k (in^4)	I_i (in^4)
1	72222	
2-9	66225.67	
10	85959.74	
		687987.1

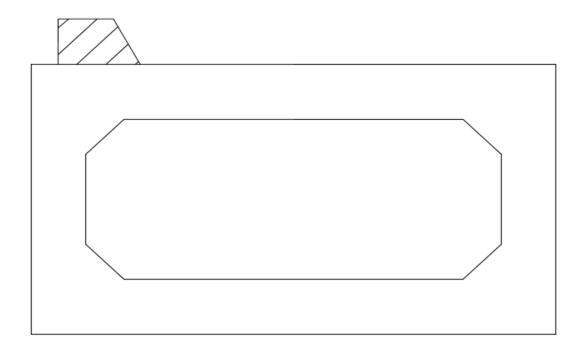
Note: I values taken from CAD for Beam 1 and from BrR for Beams 2-10.

Superimposed Dead Load Distribution Factors

Beam	L.D.Fk
1	0.105
2-9	0.096
10	0.125

Superimposed Dead Load Summary

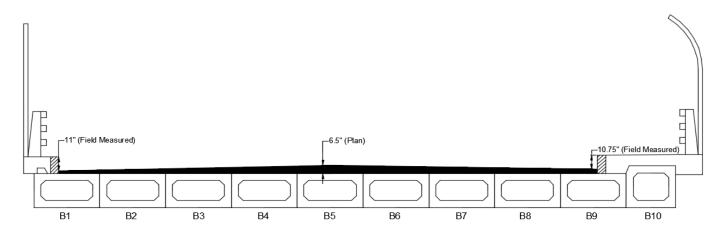
Beam	Superimposed Dead Load Due to		Total Superimposed Dead Load (k/l)
Bealli	Q1 (k/ft)	Q2 (k/ft)	Total Superimposed Dead Load (k/ft)
1	0.045	0.111	0.155
2-9	0.041	0.102	0.143
10	0.053	0.132	0.185


Notes:

1. Q1 is for north side and Q2 is for south side.

BRIDGE	P-10-002	PREPARED BY	SS
DRIDGE	F-10-002	DATE	6/2017
SUBIECT Additional Concrete Load	CHECKED BY	ST	
30DJEC1	Additional Concrete Load	DATE	7/2017

Beam 1 Additional Dead Load



Additional Concrete Area = 28.13 in^2

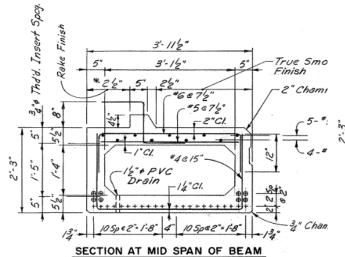
Additional Concrete Area = 28.13 in^2 (from AutoCAD)
Concrete Unit Weight = 150 lb/ft^3

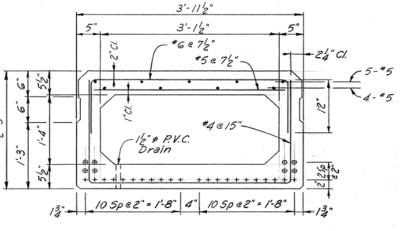
Additional Self Load = 0.029 k/ft (applied as self load to B1)

	BRIDGE P-10-002	PREPARED BY	SS	
A T Engineers Inc	DKIDGE	1-10-002	DATE	6/2017
Engineers, Inc.	SUBJECT	Waring Surface	CHECKED BY	ST
		Wearing Surface	DATE	7/2017

Wearing Surface Area = 1863.375 in^2 Travelway = 32.75 ft Average Thickness = 4.75 in Unit Weight = 0.15 k/ft^3 k/ft (total) Wearing Surface Load = 1.941 Number of Girders = 10

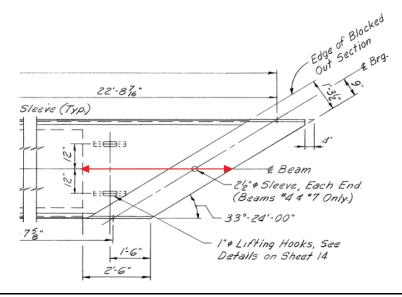
Wearing Surface is distributed equally to all beams per MassDOT Section 7.2.3.5.B


Wearing Surface Load = 0.194 k/ft (per girder)


Note: Wearing surface load was input into BrR under the "Structural Typical Section" using a 4.75" average thickness and a unit weight of 0.15 k/ft³.

PRIDCE	P-10-002	PREPARED BY	SS	
BRIDGE	F-10-002	DATE CHECKED BY	6/2017	
SUBJECT	Diaphragm Load	CHECKED BY	ST	
30bjEC1	Diaphragm Load	DATE	7/2017	

BI-48 Void Area (B1 to B9)


SECTION AT MID SPAN OF BEAM

BEAMS 2 THRU 9

BEAM I

Void Height = 16 in
Void Width = 38 in
Void Chamfer = 3 in
Void Area = 590 in^2

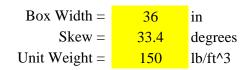
End Diaphragm

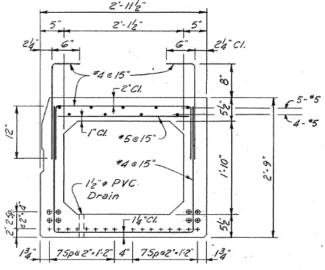
BRIDGE	P-10-002	PREPARED BY	SS
DRIDGE	r-10-002	DATE	6/2017
SUBJECT	Dianhragm Load	CHECKED BY	ST
30bjec1	Diaphragm Load	DATE	7/2017

Average End Diaphragm Length = 66.40 in

End Diaphragm Load = 3.40 k

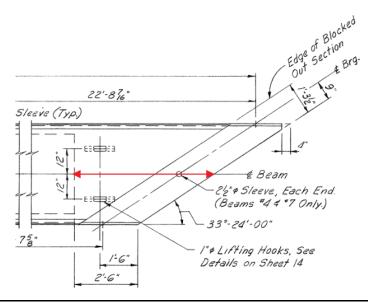
Interior Diaphragm


Interior Diaphragm Length = 8.00 in


Interior Diaphragm Load = 0.41 k

BRIDGE	P-10-002	PREPARED BY	SS
DNIDGE	1-10-002	PREPARED BY DATE CHECKED BY DATE	6/2017
SUBJECT	Diaphragm Load	CHECKED BY	ST
ЗОБЈЕСТ	Diaphragm Load	DATE	7/2017

BII-36 Void Area (B10)



SECTION AT MID SPAN OF BEAM

BEAM 10

Void Height =	22	in
Void Width =	26	in
Void Chamfer =	3	in
Void Area =	554	in^2.

End Diaphragm

Page 24 of 55

BRIDGE	P-10-002	PREPARED BY	SS
DRIDGE	1-10-002	DATE	6/2017
SUBJECT	Diaphragm Load	CHECKED BY	ST
ЗОБЈЕСТ		DATE	7/2017

Average End Diaphragm Length = 58.80 in

End Diaphragm Load = 2.83 k

Interior Diaphragm

Interior Diaphragm Length = 8.00 in

Interior Diaphragm Load = 0.38 k

BRIDGE	P-10-002	PREPARED BY	SS
BRIDGE	1 10 002	DATE	06/2017
CURIFOT	Live Load Distribution Factor - Shear and	CHECKED BY	ST
SUBJECT	Moment	DATE	07/2017

Live Load Distribution Factor - Beams 1-9

AASHTO Standard 3.23.4

Load Fraction = S/D

$$S = 4$$
 ft

D =
$$(5.75 - 0.5N_L) + 0.7N_L (1 - 0.2C)^2 = 5.920$$

Where;

$$N_L = 2$$

$$C = K(W/L)$$
 for $W/L < 1$
 $C = K$ for $W/L \ge 1$
 $C = 0.430$

Where;

$$W = 39$$
 ft

$$L = 68.12$$
 ft

$$K = ((1+u)I/J)1/2 = 0.751$$

Where;

$$I = \frac{66226}{\text{in}^4} \text{ (from BrR)}$$
 $J = \frac{141061}{\text{u}} \text{in}^4 \text{ (from BrR)}$
 $u = \frac{0.2}{\text{c}}$

Load Fraction = 0.676

BRIDGE	P-10-002	PREPARED BY
		DATE
	Live Load Distribution Factor - Shear and	CHECKED BY
SUBJECT	March 1	

Moment

DATE 07/2017

SS

06/2017

Live Load Distribution Factor - Beams 10

AASHTO Standard 3.23.4

Load Fraction = S/D

S = 3 ft

D = $(5.75 - 0.5N_L) + 0.7N_L (1 - 0.2C)^2 = 5.879$

Where;

 $N_L = 2$

C = K(W/L) for W/L < 1

C = 0.509

 $C = K \text{ for } W/L \ge 1$

Where;

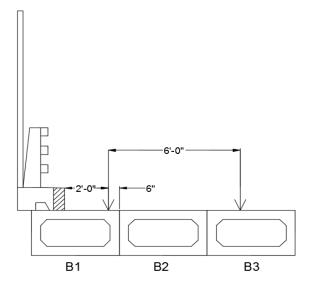
W = 39 ft

L = 68.12 ft

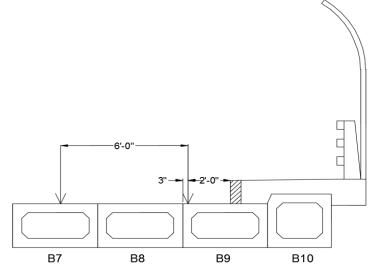
K = ((1+u)I/J)1/2 = 0.889

Where;

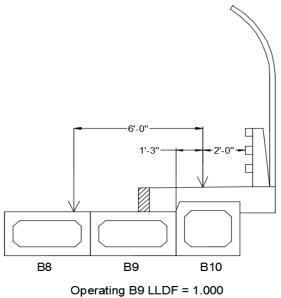
I = 85960 in⁴ (from BrR)


 $J = \frac{130519}{\text{in}^4} \text{ (from BrR)}$

u = 0.2


Load Fraction = 0.510

BRIDGE	P-10-002	PREPARED BY	SS
DRIDGE		DATE	6/2017
SUBJECT	Live Load Distribution Factor - Shear	CHECKED BY	ST
	at Supports	DATE	7/2017



Inventory B1 LLDF = 0.625 Operating B1 LLDF = 0.625

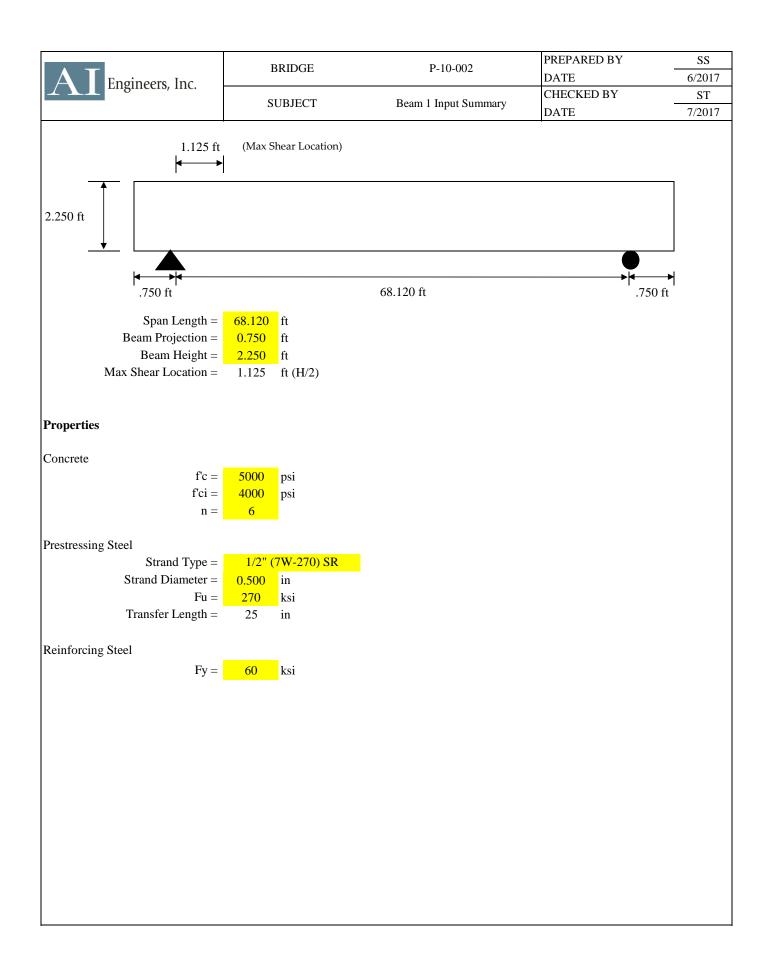
Inventory B9 LLDF = 0.563 Inventory B10 LLDF = 0.000

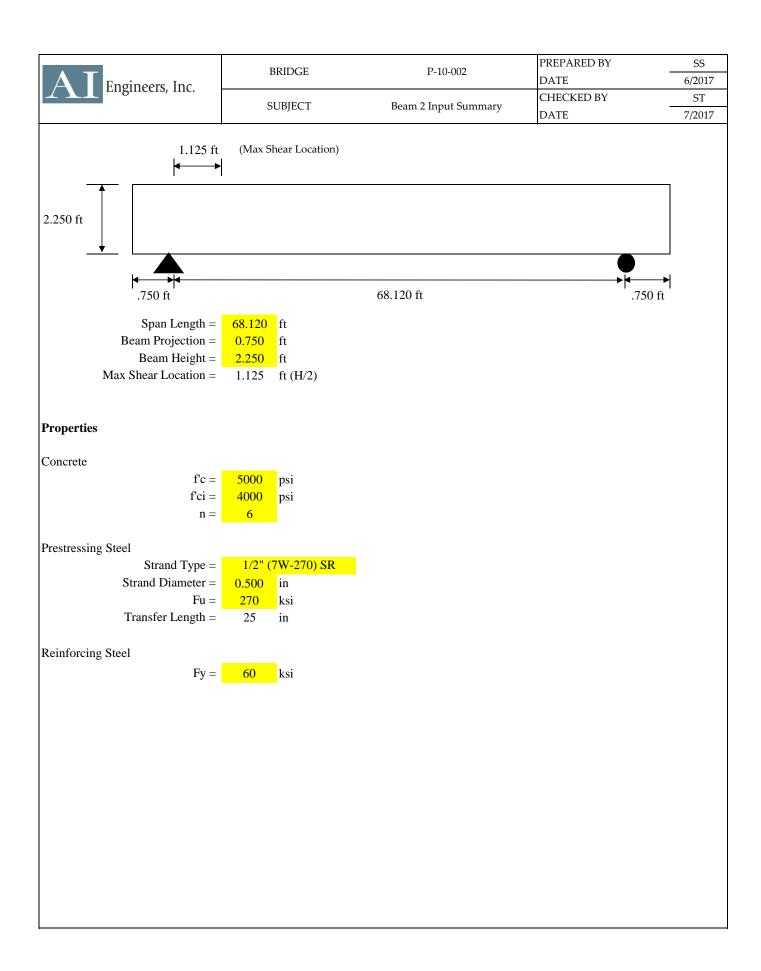
Mountable Sidewalk Case

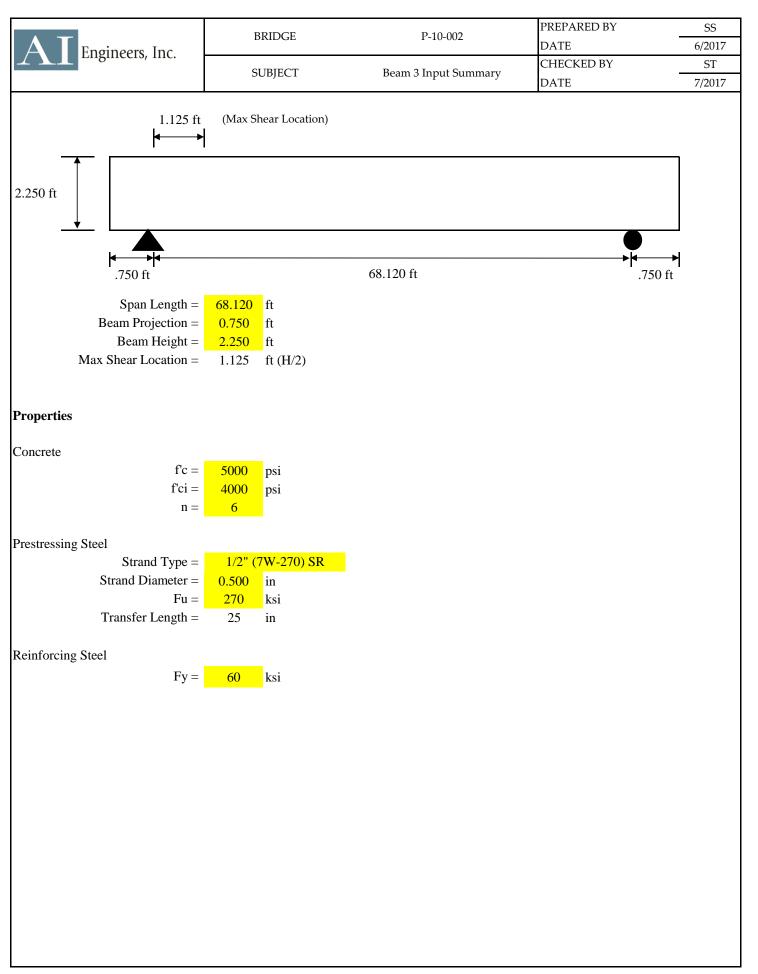
Operating B9 LLDF = 1.000 Operating B10 LLDF = 0.929

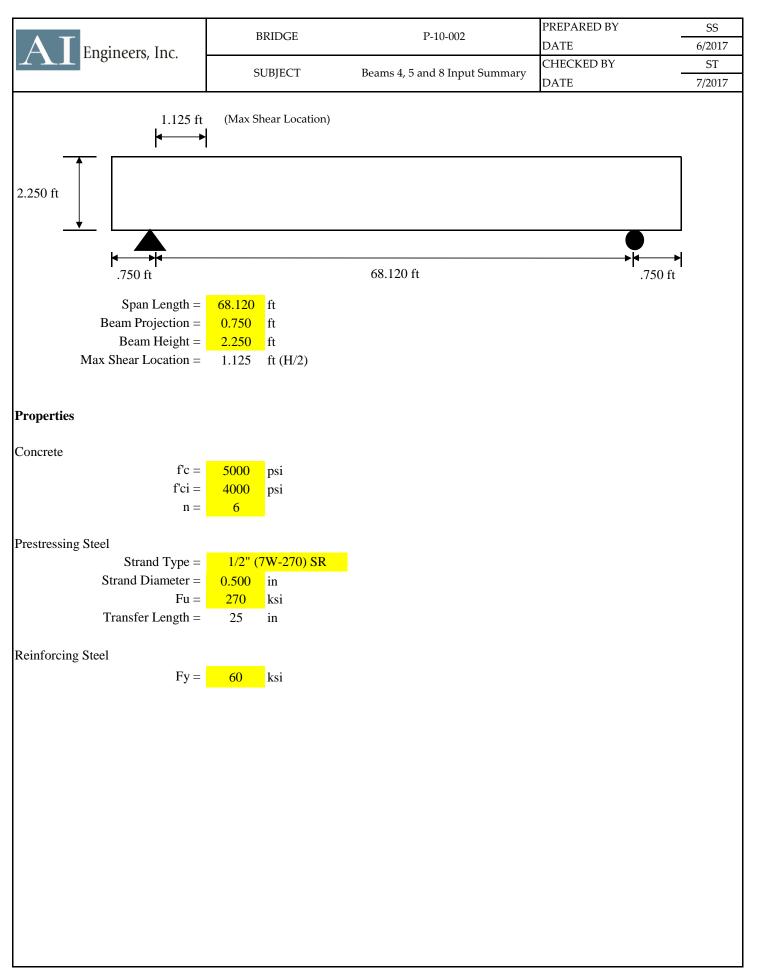
The shear at supports live load distribution factor for Beams 2-8 is 1.000.

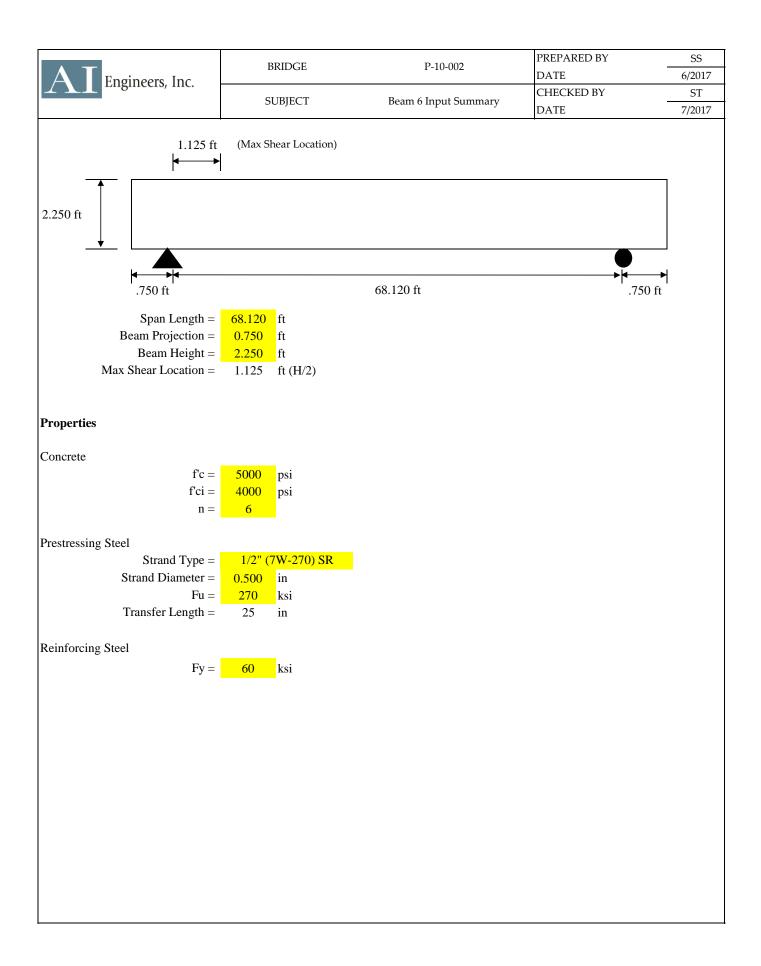
	BRIDGE	P-10-002	PREPARED BY	SS
A Engineers, Inc.		r-10-002	DATE	6/2017
	SUBJECT	Load Summary	CHECKED BY	ST
			DATE	7/2017
			UPDATED BY	JMA
Superimposed Dead Loa	ds		DATE	12/2018

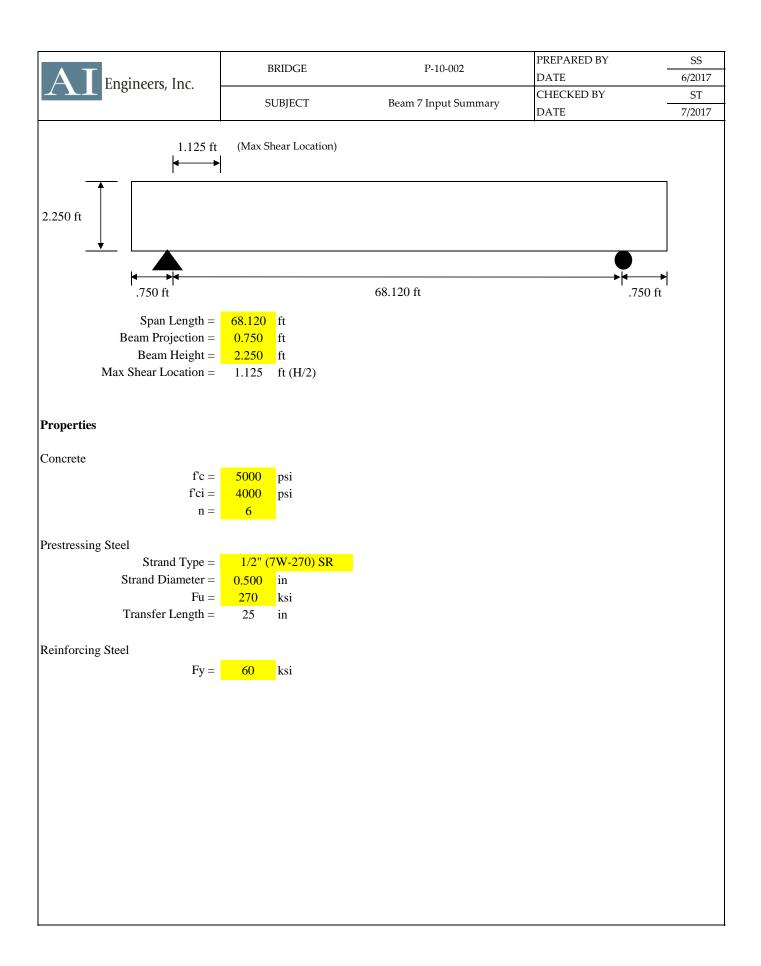

Beam #	Post & Rail (k/ft)	Wearing Surface (k/ft)	Additional Load (k/ft)
1	0.155	0.194	0.029
2	0.143	0.194	0.000
3	0.143	0.194	0.000
4	0.143	0.194	0.000
5	0.143	0.194	0.000
6	0.143	0.194	0.000
7	0.143	0.194	0.000
8	0.143	0.194	0.000
9	0.143	0.194	0.000
10	0.185	0.194	0.000

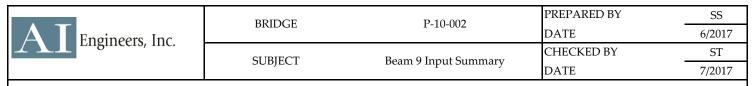

Diaphragm Loads

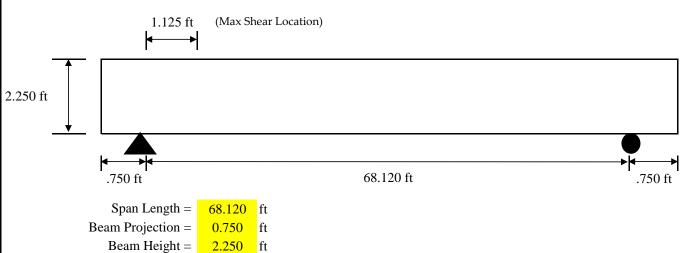

Beam #	End Diaphragm Load (k)	Int. Diaphragm Load (k)
1-9	3.401	0.410
10	2.828	0.385


Live Load Distribution Factors


Beam #	LLDF (Inv.)	LLDF (Oper.)
1-9	0.676	0.676
10	0.510	0.929







Properties

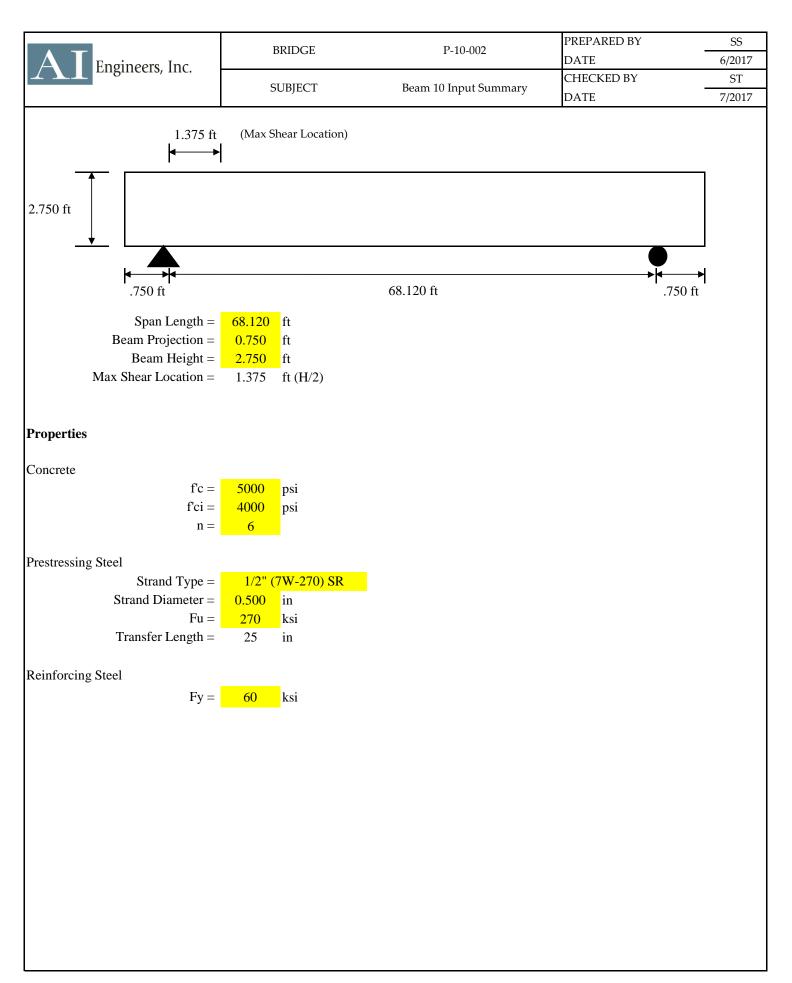
Max Shear Location =

Concrete

$$\begin{array}{ccc} f'c = & 5000 & psi \\ f'ci = & 4000 & psi \\ n = & 6 & \end{array}$$

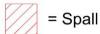
1.125 ft (H/2)

Prestressing Steel


$$Strand Type = 1/2" (7W-270) SR$$

$$Strand Diameter = 0.500 in$$

$$Fu = 270 ksi$$


$$Transfer Length = 25 in$$

Reinforcing Steel

AT Engineers, Inc.	BRIDGE	P-10-002 (0DY)	PREPARED BY	JMA
	DRIDGE 1-10-002 (0D1)	r-10-002 (0D1)	DATE	12/2018
	SUBJECT	Detail Legend + Strand Loss Info	CHECKED BY	SS
		Detail Legend + Strand Loss Into	DATE	2/2018

Legend:

= Strand with no section loss

= Strand with 10% section loss

= Strand with 25% section loss

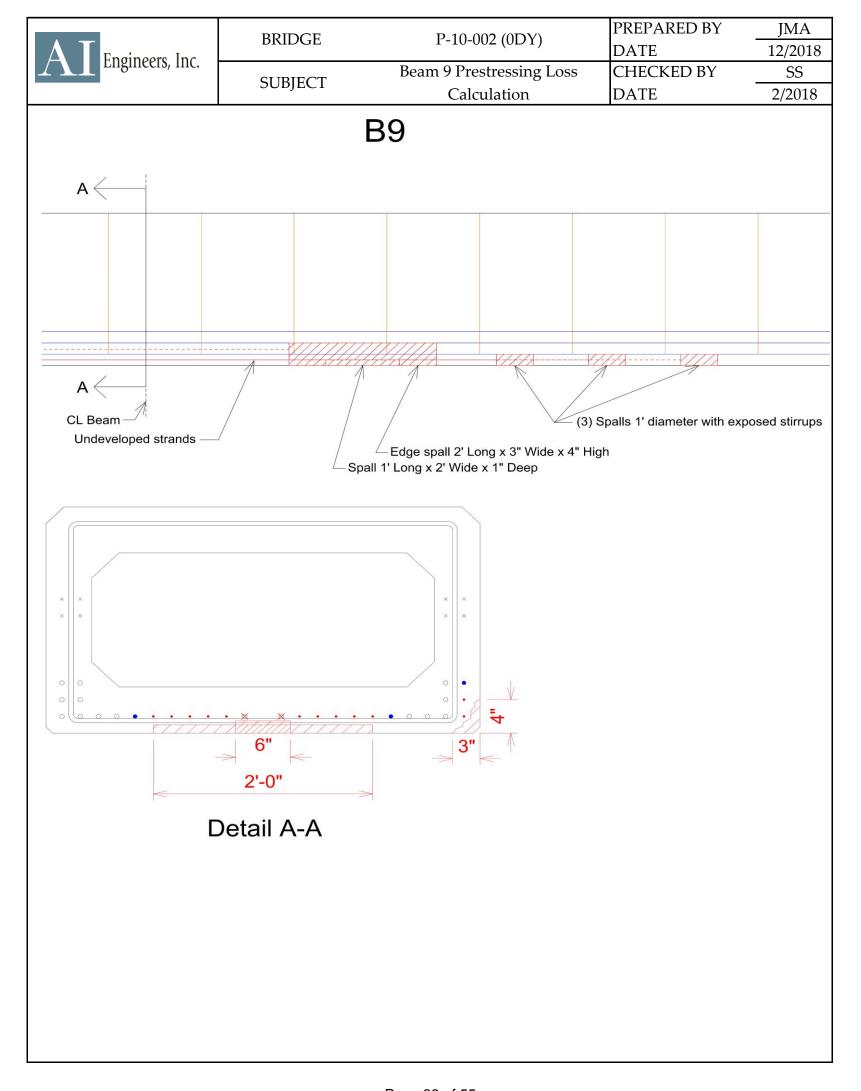
= Strand with 50% section loss

Notes:

1. Losses taken from 2018 Routine Inspection Report.

2. Losses shown in details based on DRAFT MassDOT 2018 Edition LRFR Bridge Manual - Part I Section 7.2.10 - Special Instructions for Deteriorated Prestressed Beam Load Ratings, Dated 11/14/2018.

Original Strand Area = 0.153 in^2
Original Equiv Strand Diameter = 0.441 in


10% Loss Strand Area = 0.138 in^2 10% Equiv Strand Diameter = 0.419 in

25% Loss Strand Area = 0.115 in^2 25% Equiv Strand Diameter = 0.383 in

50% Loss Strand Area = 0.077 in^2 50% Equiv Strand Diameter = 0.313 in

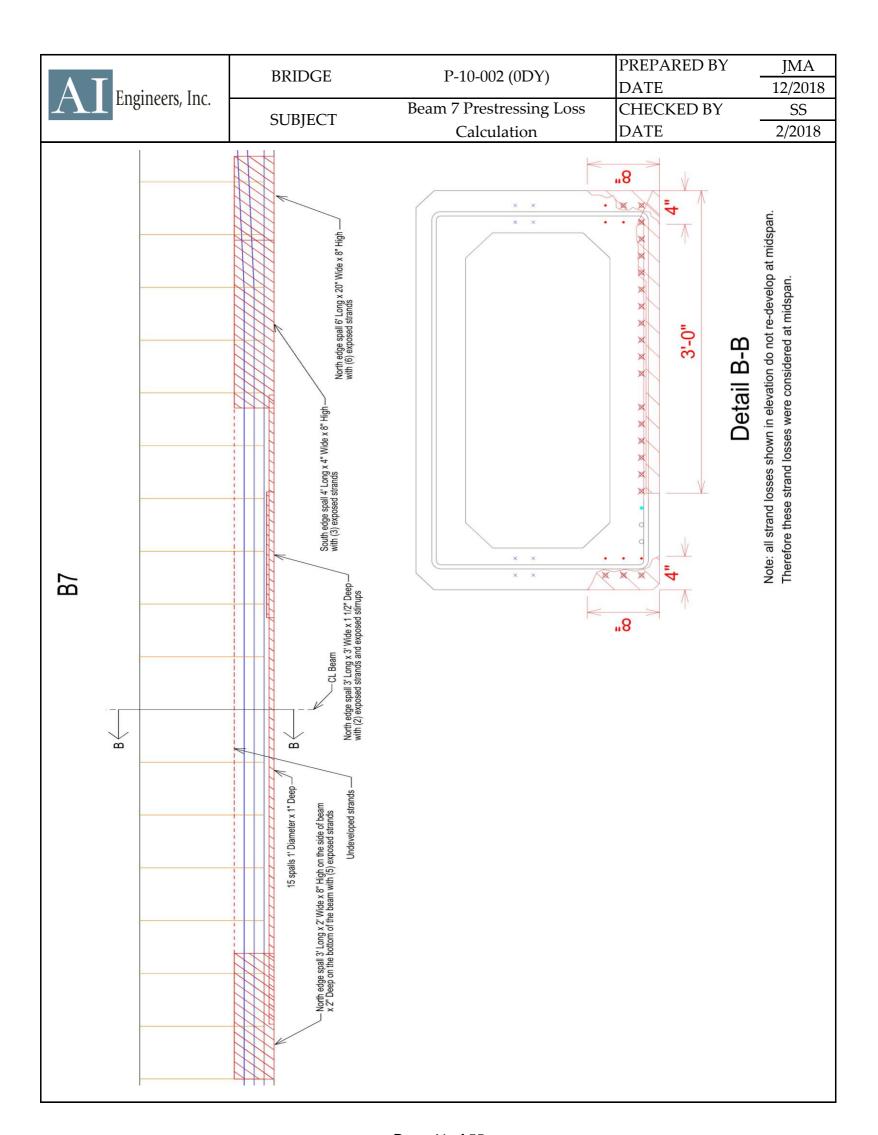
> C.G.S. Row 1 = 2.000 in C.G.S. Row 2 = 4.000 in C.G.S. Row 3 = 6.000 in

At midspan points only At midspan points only

AI Engineers, Inc.	BRIDGE I	P-10-002 (0DY)	PREPARED BY	JMA
		T-10-002 (0D1)	DATE	12/2018
	SUBJECT	Beam 9 Prestressing Loss	CHECKED BY	SS
		Calculation	DATE	2/2018

No. of Row 1 Strands w/no loss =	7	No. of Row 2 Strands w/no loss =	3
No. of Row 1 Strands $w/10\%$ loss =	2	No. of Row 2 Strands $w/10\%$ loss =	0
No. of Row 1 Strands $w/25\%$ loss =	0	No. of Row 2 Strands $w/25\%$ loss =	0
No. of Row 1 Strands $w/50\%$ loss =	11	No. of Row 2 Strands $w/50\%$ loss =	1
No. of Row 1 Strands $w/100\%$ loss =	2	No. of Row 2 Strands w/100% loss =	0

No. of Row 3 Strands w/no loss = 3
No. of Row 3 Strands w/10% loss = 1
No. of Row 3 Strands w/25% loss = 0
No. of Row 3 Strands w/50% loss = 0
No. of Row 3 Strands w/100% loss = 0


(Stress Relieved) Jacking Stress Ratio = 0.7 Ultimate Strength, F_u = 270 ksi Total Adjusted Area of Strands = 3.327 in^2 Jacking Force = (input into BrR) 629 k C.G. of Strands = 3.040 (input into BrR)

POIs (Distance from left support)

27.248	ft	0.4L
30.654	ft	0.45L
34.060	ft	0.5L
37.466	ft	0.55L
40.872	ft	0.6L

Flexure Capacity - 34.0599'

Spec Check Detail for 6B.5.3.3 PS Moment Capacity Part B - ALLOWABLE STRESS RATING AND LOAD FACTOR RATING 6B.5 NOMINAL CAPACITY: C 6B.5.3 Load Factor Method 6B.5.3.3 Prestressed Concrete Capacity (AASHTO Manual for Bridge Evaluation, Third Edition - 2017) PS Box Rect Void - At Location = 34.0599 (ft) - Left INPUT: Adjust Moment Capacity for Min Reinforcement Requirements: No SUMMARY: Therefore the k adjustment factor will not be considered. Nominal Moment Capacity = Phi * Mn Load Load Phi*Mn Group Comb Phi*Mn < 1.2Mcr Mu Capacity (kip-ft) (kip-ft) (kip-ft) 1517.25 Inventory 3, INV, MAX 1517.25

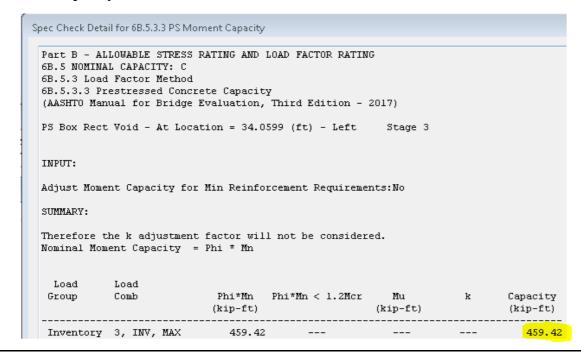
				PREPARED	RY	JMA
A T	BRID	GE	P-10-002 (0DY)	DATE	DΙ	12/2018
Engineers, Inc.	07.77		Beam 7 Prestressing Los		BY	SS
	SUBJ	ECT	Calculation	DATE		2/2018
	· ·					<u> </u>
No. of Row 1 Strands	s w/no loss =	2	No. of Row 2 Str	ands w/no loss =	0	
No. of Row 1 Strands	v/10% loss =	0	No. of Row 2 Strar	nds w/10% loss =	0	
No. of Row 1 Strands	v/25% loss =	1	No. of Row 2 Strar	nds w/25% loss =	0	
No. of Row 1 Strands	v/50% loss =	1	No. of Row 2 Strar	nds w/50% loss =	2	
No. of Row 1 Strands w	/100% loss =	18	No. of Row 2 Strand	ds w/100% loss =	2	
No. of Row 3 Strands	s w/no loss =	0				
No. of Row 3 Strands	v/10% loss =	0				
No. of Row 3 Strands	v/25% loss =	0				
No. of Row 3 Strands	v/50% loss =	3				
No. of Row 3 Strands w	/100% loss =	1				
Jacking S	Stress Ratio =	0.7	(Stress Relieved)			
Ultimate S	Strength, F_u =	270	ksi			
Total Adjusted Area	of Strands =	0.883	in^2			
Ja	cking Force =	167	k (input into BrR)			
C.G	of Strands =	3.395	in (input into BrR)			
			- · · · · · · · · · · · · · · · · · · ·			
POIs (Distance from left	support)					
27.248 ft	0.4L					
30.654 ft	0.45L					
34.060 ft	0.5L					

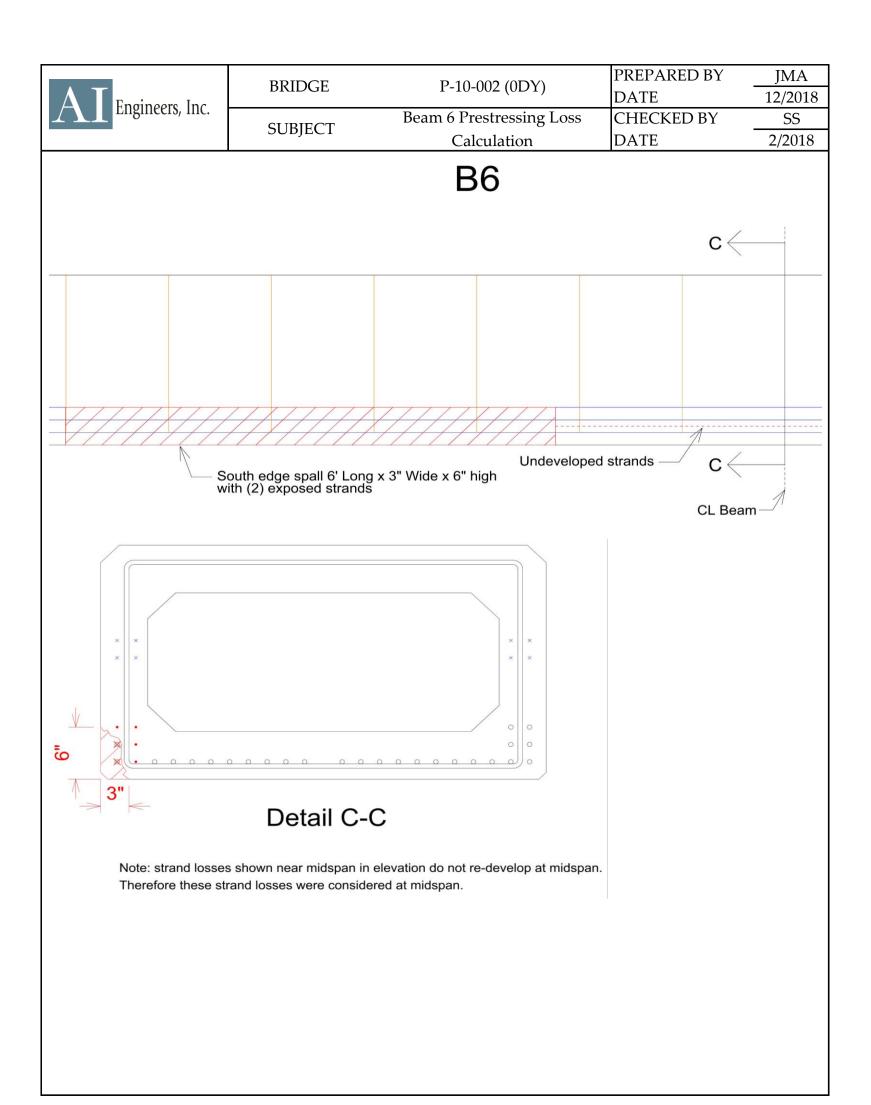
Notes:

37.466

40.872

1. Points of interest defined at 1/4th points along the input deterioration range and mid-span (if applicable).


Flexure Capacity - 34.0599'


ft

ft

0.55L

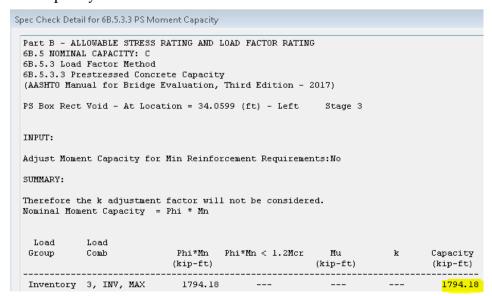
0.6L

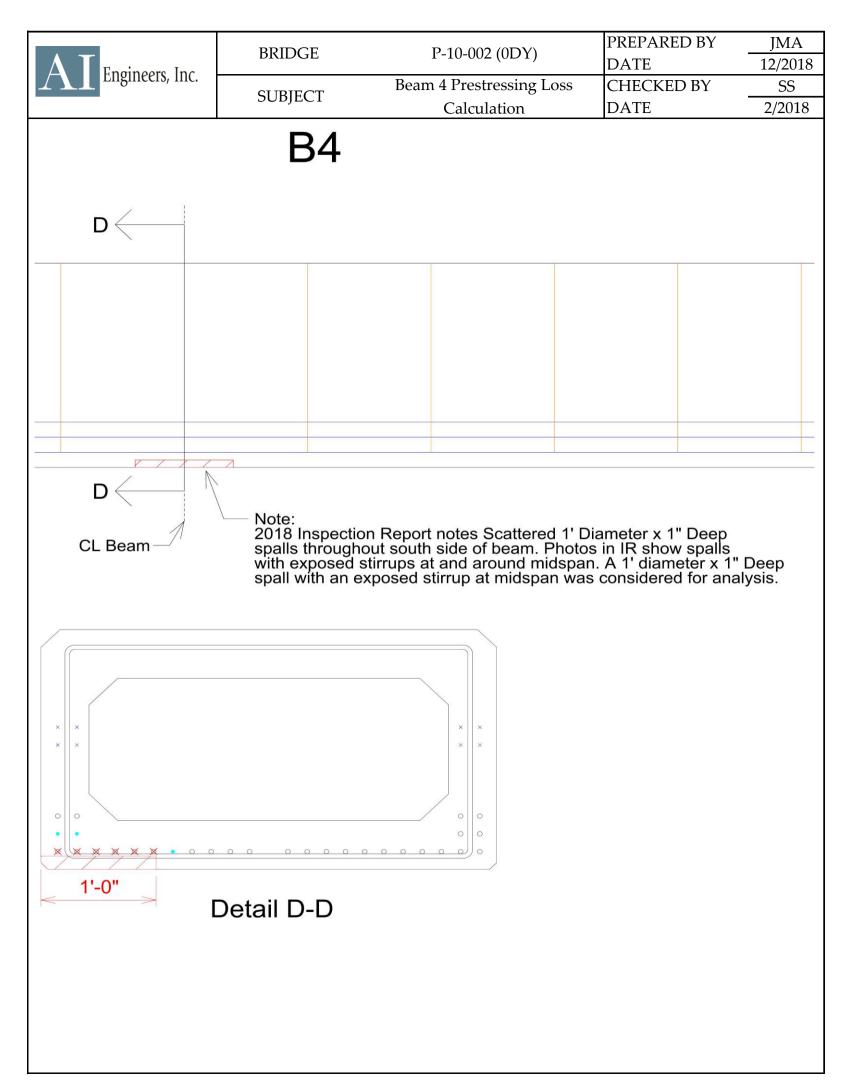
A Engineers, Inc.	BRIDGE	D 10 002 (0DV)	PREPARED BY	JMA
		P-10-002 (0DY)	DATE	12/2018
	SUBJECT	Beam 6 Prestressing Loss	CHECKED BY	SS
		Calculation	DATE	2/2018

No. of Row 1 Strands w/no loss =	20	No. of Row 2 Strands w/no loss =	2
No. of Row 1 Strands $w/10\%$ loss =	0	No. of Row 2 Strands $w/10\%$ loss =	0
No. of Row 1 Strands $w/25\%$ loss =	0	No. of Row 2 Strands $w/25\%$ loss =	0
No. of Row 1 Strands $w/50\%$ loss =	1	No. of Row 2 Strands $w/50\%$ loss =	1
No. of Row 1 Strands $w/100\%$ loss =	1	No. of Row 2 Strands $w/100\%$ loss =	1

```
No. of Row 3 Strands w/no loss = 2
No. of Row 3 Strands w/10% loss = 0
No. of Row 3 Strands w/25% loss = 0
No. of Row 3 Strands w/50% loss = 2
No. of Row 3 Strands w/100% loss = 0
```

```
Jacking Stress Ratio =
                                       0.7
                                              (Stress Relieved)
          Ultimate Strength, F<sub>u</sub>=
                                       270
                                              ksi
Total Adjusted Area of Strands =
                                      3.980
                                             in^2
                  Jacking Force =
                                       752
                                              k
                                                          (input into BrR)
                 C.G. of Strands =
                                                          (input into BrR)
                                     2.655
                                             in
```


POIs (Distance from left support)


27.248	ft	0.4L
30.654	ft	0.45L
34.060	ft	0.5L
37.466	ft	0.55L
40.872	ft	0.6L

Notes:

1. Points of interest defined at 1/4th points along the input deterioration range and mid-span (if applicable).

Flexure Capacity - 34.0599'

	RDIDA		P-10-002 (0DY)	PREPARED B	BY	JMA
A T Engineers, Inc.	BRIDGE		1-10-002 (0D1)	DATE		12/2018
Eligilieers, flic.	SUBJE	CT.	Beam 4 Prestressing Loss	CHECKED B	Y	SS
	ЗОВЈЕ	EC1	Calculation	DATE		2/2018
No. of Row 1 Strands w	//no loss =	15	No. of Row 2 Strands	s w/no loss =	2	
No. of Row 1 Strands w/1	10% loss =	0	No. of Row 2 Strands v	w/10% loss =	0	
No. of Row 1 Strands w/25% loss =		1	No. of Row 2 Strands $w/25\%$ loss = $\frac{2}{}$		2	
No. of Row 1 Strands w/50% loss =		0	No. of Row 2 Strands $w/50\%$ loss = 0		0	
No. of Row 1 Strands w/100% loss =		6	No. of Row 2 Strands $w/100\%$ loss = 0		0	
No. of Row 3 Strands w	//no loss =	4				
No. of Row 3 Strands w/1	10% loss =	0				
No. of Row 3 Strands w/2	25% loss =	0				
No. of Row 3 Strands w/5	50% loss =	0				
No. of Row 3 Strands w/10	00% loss =	0				
Jacking Str	ess Ratio =	0.7	(Stress Relieved)			
Ultimate Str	ength, F_u =	270	ksi			

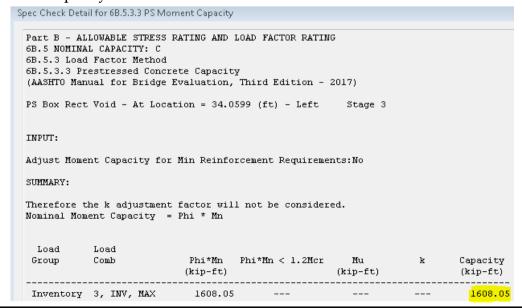
(input into BrR)

(input into BrR)

POIs (Distance from left support)

Total Adjusted Area of Strands =

Jacking Force =


C.G. of Strands = 2.989 in

27.248	ft	0.4L
30.654	ft	0.45L
34.060	ft	0.5L
37.466	ft	0.55L
40.872	ft	0.6L

Notes:

1. Points of interest defined at 1/4th points along the input deterioration range and mid-span (if applicable).

Flexure Capacity - 34.0599'

3.558

672

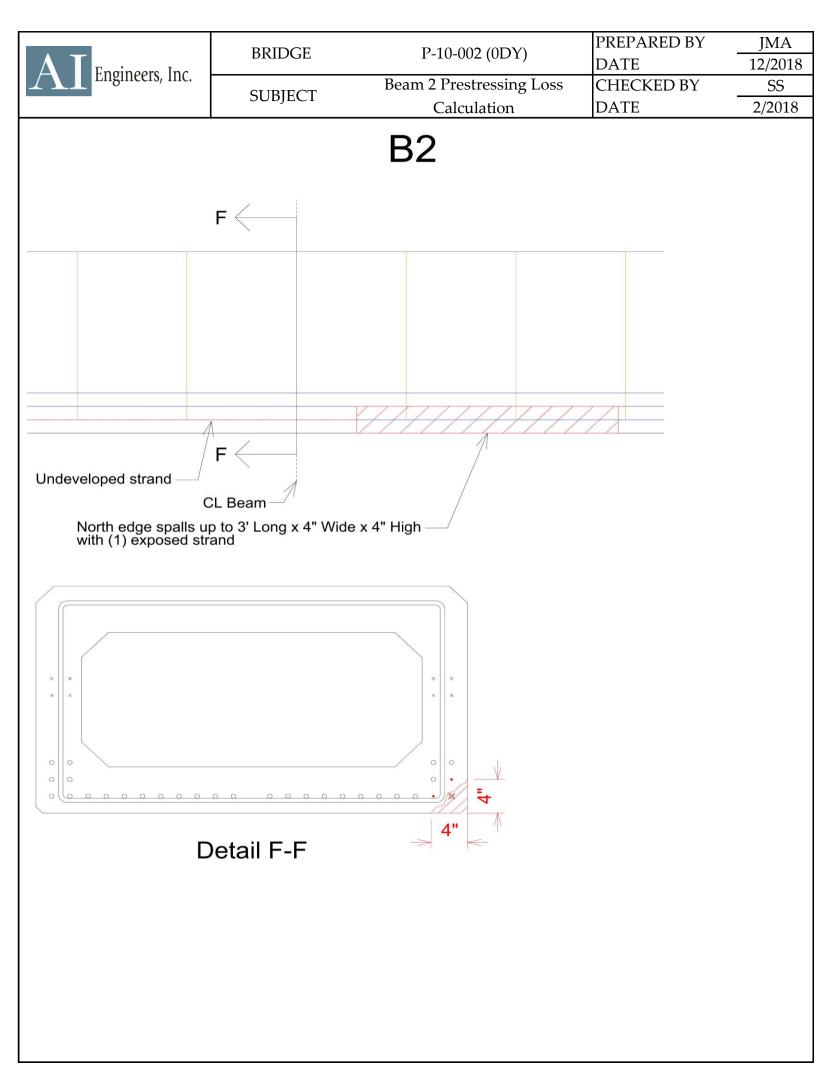
in^2

k

A Engineers, Inc.	BRIDGE	P-10-002 (0DY)	PREPARED BY	JMA
	DRIDGE	1-10-002 (0D1)	DATE	12/2018
	SUBJECT	Beam 3 Prestressing Loss	CHECKED BY	SS
	SUBJECT	Calculation	DATE	2/2018

No. of Row 1 Strands w/no loss =	20	No. of Row 2 Strands w/no loss =	2
No. of Row 1 Strands w/10% loss =	0	No. of Row 2 Strands $w/10\%$ loss =	0
No. of Row 1 Strands w/25% loss =	0	No. of Row 2 Strands $w/25\%$ loss =	0
No. of Row 1 Strands w/50% loss =	1	No. of Row 2 Strands $w/50\%$ loss =	1
No. of Row 1 Strands w/100% loss =	1	No. of Row 2 Strands $w/100\%$ loss =	1

```
No. of Row 3 Strands w/no loss = 2
No. of Row 3 Strands w/10% loss = 0
No. of Row 3 Strands w/25% loss = 0
No. of Row 3 Strands w/50% loss = 1
No. of Row 3 Strands w/100% loss = 1
```


```
Jacking Stress Ratio =
                                       0.7
                                              (Stress Relieved)
          Ultimate Strength, F<sub>u</sub>=
                                       270
                                              ksi
Total Adjusted Area of Strands =
                                      3.903
                                              in^2
                  Jacking Force =
                                       738
                                              k
                                                          (input into BrR)
                 C.G. of Strands =
                                      2.589
                                                          (input into BrR)
                                              in
```

POIs (Distance from left support)

27.248	ft	0.4L
30.654	ft	0.45L
34.060	ft	0.5L
37.466	ft	0.55L
40.872	ft	0.6L

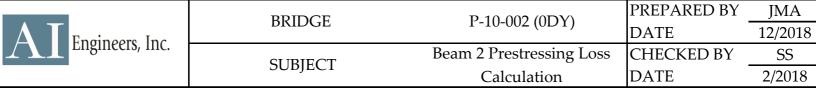
Flexure Capacity - 34.0599'

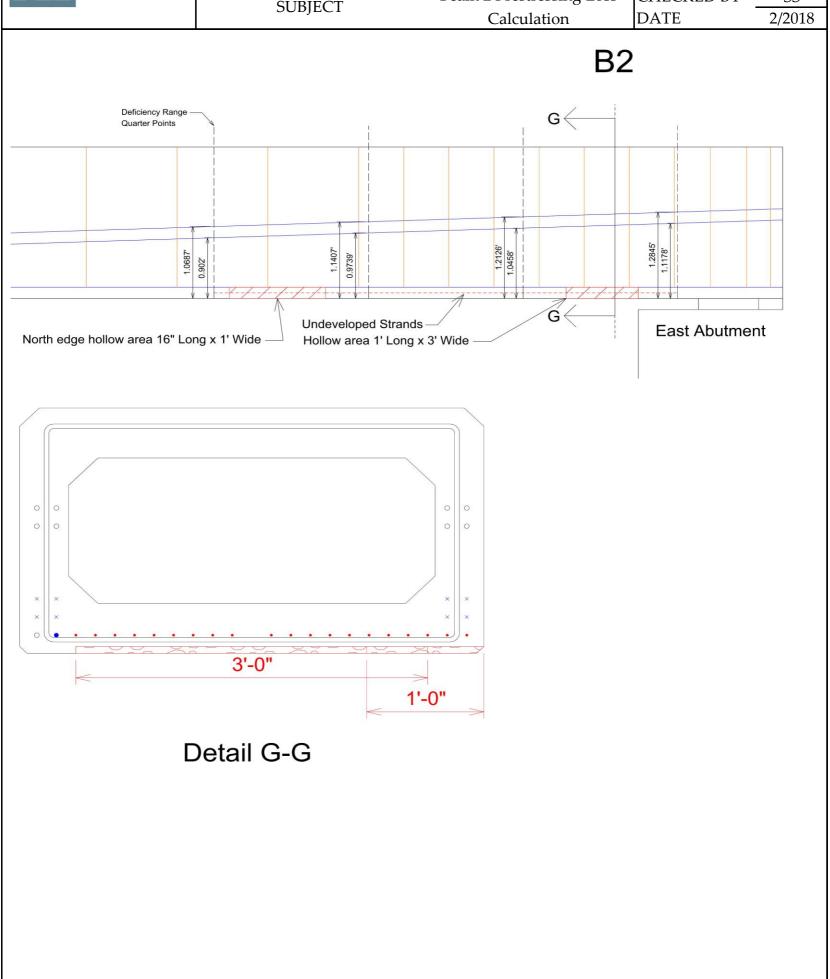
Spec Check Detail for 6B.5.3.3 PS Moment Capacity Part B - ALLOWABLE STRESS RATING AND LOAD FACTOR RATING 6B.5 NOMINAL CAPACITY: C 6B.5.3 Load Factor Method 6B.5.3.3 Prestressed Concrete Capacity (AASHTO Manual for Bridge Evaluation, Third Edition - 2017) PS Box Rect Void - At Location = 34.0599 (ft) - Left Stage 3 INPUT: Adjust Moment Capacity for Min Reinforcement Requirements: No SUMMARY: Therefore the k adjustment factor will not be considered. Nominal Moment Capacity = Phi * Mn Load Load Phi*Mn Mu Group Comb Phi*Mn < 1.2Mcr Capacity (kip-ft) (kip-ft) (kip-ft) Inventory 3, INV, MAX 1772.00 1772.00

AI Engineers, Inc.	BRIDGE	P-10-002 (0DY)	PREPARED BY	JMA
			DATE	12/2018
	SUBJECT	Beam 2 Prestressing Loss	CHECKED BY	SS
		Calculation	DATE	2/2018

```
No. of Row 1 Strands w/no loss =
                                                        No. of Row 2 Strands w/no loss =
                                        20
                                                                                              3
No. of Row 1 Strands w/10\% loss =
                                        0
                                                      No. of Row 2 Strands w/10\% loss =
                                                                                              0
                                        0
                                                                                              0
No. of Row 1 Strands w/25\% loss =
                                                      No. of Row 2 Strands w/25\% loss =
No. of Row 1 Strands w/50\% loss =
                                        1
                                                      No. of Row 2 Strands w/50\% loss =
                                                                                              1
                                        1
                                                                                              0
No. of Row 1 Strands w/100\% loss =
                                                     No. of Row 2 Strands w/100\% loss =
```

No. of Row 3 Strands w/no loss = 4
No. of Row 3 Strands w/10% loss = 0
No. of Row 3 Strands w/25% loss = 0
No. of Row 3 Strands w/50% loss = 0
No. of Row 3 Strands w/100% loss = 0


Jacking Stress Ratio = 0.7 (Stress Relieved) Ultimate Strength, F_{ij} = 270 ksi Total Adjusted Area of Strands = 4.285 in^2 Jacking Force = 810 k (input into BrR) C.G. of Strands = (input into BrR) 2.821 in


POIs (Distance from left support)

27.248	ft	0.4L
30.654	ft	0.45L
34.060	ft	0.5L
37.466	ft	0.55L
40.872	ft	0.6L

Flexure Capacity - 34.0599'

Spec Check Detail for 6B.5.3.3 PS Moment Capacity Part B - ALLOWABLE STRESS RATING AND LOAD FACTOR RATING 6B.5 NOMINAL CAPACITY: C 6B.5.3 Load Factor Method 6B.5.3.3 Prestressed Concrete Capacity (AASHTO Manual for Bridge Evaluation, Third Edition - 2017) PS Box Rect Void - At Location = 34.0599 (ft) - Left INPIT: Adjust Moment Capacity for Min Reinforcement Requirements: No Therefore the k adjustment factor will not be considered. Nominal Moment Capacity = Phi * Mn Load Load Group Comb Phi*Mn Phi*Mn < 1.2Mcr Mu Capacity (kip-ft) (kip-ft) (kip-ft) Inventory 3, INV, MAX 1890.12

BRIDGE	P-10-002 (0DY)	PREPARED BY	JMA
	1-10-002 (0D1)	DATE	12/2018
SUBJECT	Beam 2 Prestressing Loss	CHECKED BY	SS
	Calculation	DATE	2/2018

No. of Row 1 Strands w/no loss =	1
No. of Row 1 Strands $w/10\%$ loss =	1
No. of Row 1 Strands $w/25\%$ loss =	0
No. of Row 1 Strands w/50% loss =	20
No. of Row 1 Strands $w/100\%$ loss =	0

No. of Row 2 Strands w/no loss = 4
No. of Row 2 Strands w/10% loss = 0
No. of Row 2 Strands w/25% loss = 0
No. of Row 2 Strands w/50% loss = 0
No. of Row 2 Strands w/100% loss = 0

No. of Row 3 Strands w/no loss = 4

No. of Row 3 Strands w/10% loss = 0

No. of Row 3 Strands w/25% loss = 0

No. of Row 3 Strands w/50% loss = 0

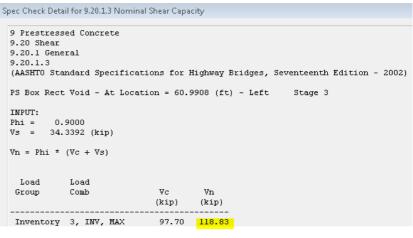
No. of Row 3 Strands w/100% loss = 0

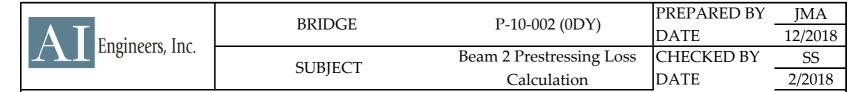
Notes:

1. Rows 2 and 3 are harped at these locations.

> Row 2 C.G. (ft) Row 3 C.G. (ft) C.G. of Strands (in) POI 60.991 0.902 1.069 5.937 63.132 0.974 1.141 6.283 65.274 1.213 6.629 1.046 67.416 1.118 1.285 6.975

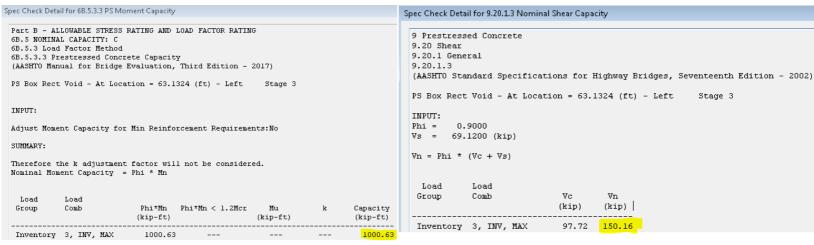
> > Jacking Force = 577 k (input into BrR)

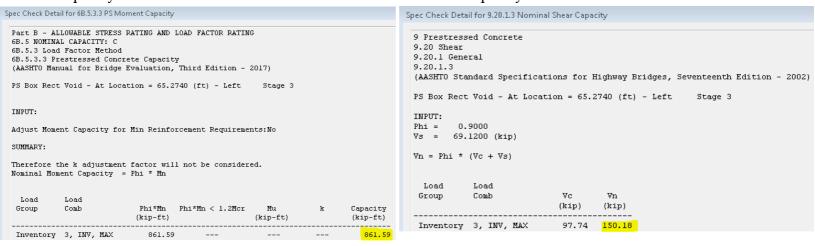

POIs (Distance from left support)


60.9908 ft 63.1324 ft 65.2740 ft 67.4155 ft

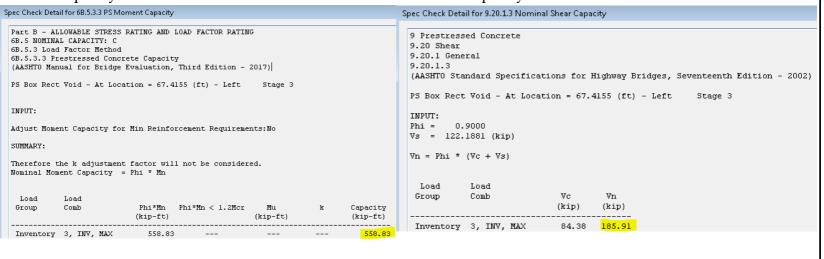
Flexure Capacity - 60.9908

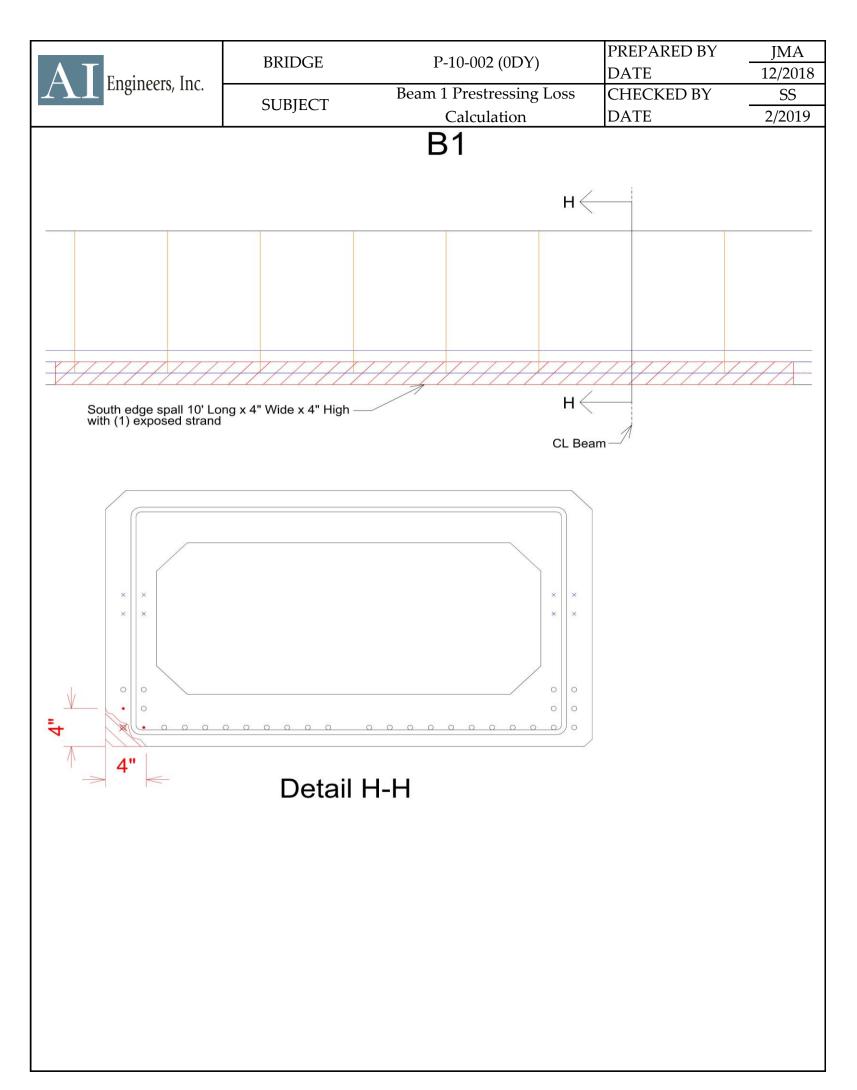
Spec Check Detail for 6B.5.3.3 PS Moment Capacity Part B - ALLOWABLE STRESS RATING AND LOAD FACTOR RATING 6B.5 NOMINAL CAPACITY: C 6B.5.3 Load Factor Method 6B.5.3.3 Prestressed Concrete Capacity (AASHTO Manual for Bridge Evaluation, Third Edition - 2017) PS Box Rect Void - At Location = 60.9908 (ft) - Left INPUT: Adjust Moment Capacity for Min Reinforcement Requirements: No SUMMARY: Therefore the k adjustment factor will not be considered. Nominal Moment Capacity = Phi * Mn Load Capacity (kip-ft) Group Phi*Mn Phi*Mn < 1.2Mcr (kip-ft) 1125.67 Inventory 3, INV, MAX 1125.67


Shear Capacity - 60.9908


Flexure Capacity - 63.1324

Shear Capacity - 63.1324


Flexure Capacity - 65.2740


Shear Capacity - 65.2740

Flexure Capacity - 67.4155

Shear Capacity - 67.4155

BRI		GE	P-10-002 (0DY)	PREPARED BY DATE		JMA
A Engineers, Inc.	DIGDGE					12/2018
SUB		ЕСТ	Beam 1 Prestressing Loss	CHECKED BY		SS
	300).		Calculation	DATE		2/2019
					_	
No. of Row 1 Strands v	•	20	No. of Row 2 Strands	•	3	
No. of Row 1 Strands w/		0	No. of Row 2 Strands w	•	0	
No. of Row 1 Strands w/		0	No. of Row 2 Strands w		0	
No. of Row 1 Strands w/		1	No. of Row 2 Strands w		1	
No. of Row 1 Strands w/1	00% loss =	1	No. of Row 2 Strands w/	100% loss =	0	
No. of Row 3 Strands v		4				
No. of Row 3 Strands w/	10% loss =	0				
No. of Row 3 Strands w/		0				
No. of Row 3 Strands w/	50% loss =	0				
No. of Row 3 Strands w/1	00% loss =	0				
Jacking Str	ess Ratio =	0.7	(Stress Relieved)			
Ultimate Str	ength, F _u =	270	ksi			
Total Adjusted Area o	of Strands =	4.285	_in^2			
Jacking Force =		810	k (input into BrR)			
C.G. o	of Strands =	2.821	in (input into BrR)			
POIs (Distance from left su	ıpport)					
27.248 ft	0.4L					
30.654 ft	0.45L					
34.060 ft	0.5L					
37.466 ft	0.55L					
40.872 ft	0.6L					
Flexure Capacity - 34.0599'						
Spec Check Detail for 68.5.3.3 PS Mom	nent Canacity					

```
Spec Check Detail for 6B.5.3.3 PS Moment Capacity
  Part B - ALLOWABLE STRESS RATING AND LOAD FACTOR RATING
  6B.5 NOMINAL CAPACITY: C
  6B.5.3 Load Factor Method
  6B.5.3.3 Prestressed Concrete Capacity (AASHTO Manual for Bridge Evaluation, Third Edition - 2017)
  PS Box Rect Void - At Location = 34.0599 (ft) - Left Stage 3
  INPUT:
  Adjust Moment Capacity for Min Reinforcement Requirements: No
  SUMMARY:
  Therefore the k adjustment factor will not be considered.
  Nominal Moment Capacity = Phi * Mn
           Load
Comb
   Load
  Group Comb Phi*Mn Phi*Mn < 1.2Mcr Mu k
(kip-ft) (kip-ft)
                                                                          Capacity
                                                                            (kip-ft)
                                                   --- 1890.12
  Inventory 3, INV, MAX 1890.12 ---
```

APPENDIX D COMPUTER INPUT AND OUTPUT